mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17596 Was reverted before, now fixed version. Reviewed By: ezyang Differential Revision: D14270288 fbshipit-source-id: c72490b5d02cc6098cb60145fa9a842b3c9a24c5
140 lines
3.7 KiB
C++
140 lines
3.7 KiB
C++
#ifndef CAFFE2_OPERATORS_MINMAX_OPS_H_
|
|
#define CAFFE2_OPERATORS_MINMAX_OPS_H_
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/logging.h"
|
|
#include "caffe2/core/operator.h"
|
|
#include "caffe2/core/types.h"
|
|
#include "caffe2/utils/math.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <typename T, class Context>
|
|
class MaxOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
|
|
USE_SIMPLE_CTOR_DTOR(MaxOp)
|
|
|
|
bool RunOnDevice() override {
|
|
const auto& X0 = Input(0);
|
|
auto* Y = Output(0);
|
|
Y->ResizeLike(X0);
|
|
const T* X0_data = X0.template data<T>();
|
|
T* Y_data = Y->template mutable_data<T>();
|
|
const int N = X0.numel();
|
|
if (InputSize() == 1) {
|
|
if (Y != &X0) {
|
|
context_.template CopySameDevice<T>(N, X0_data, Y_data);
|
|
}
|
|
return true;
|
|
}
|
|
const auto& X1 = Input(1);
|
|
CAFFE_ENFORCE_EQ(
|
|
X0.sizes(),
|
|
Y->sizes(),
|
|
"Description: Input #1, input dimension:",
|
|
X1.sizes(),
|
|
" should match output dimension: ",
|
|
Y->sizes());
|
|
const T* X1_data = X1.template data<T>();
|
|
math::Max<T, Context>(N, X0_data, X1_data, Y_data, &context_);
|
|
for (int i = 2; i < InputSize(); ++i) {
|
|
const auto& Xi = Input(i);
|
|
CAFFE_ENFORCE_EQ(
|
|
Xi.sizes(),
|
|
Y->sizes(),
|
|
"Description: Input #",
|
|
i,
|
|
", input dimension:",
|
|
Input(i).sizes(),
|
|
" should match output dimension: ",
|
|
Y->sizes());
|
|
const T* Xi_data = Xi.template data<T>();
|
|
math::Max<T, Context>(N, Y_data, Xi_data, Y_data, &context_);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <typename T, class Context>
|
|
class MinOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
|
|
USE_SIMPLE_CTOR_DTOR(MinOp)
|
|
|
|
bool RunOnDevice() override {
|
|
const auto& X0 = Input(0);
|
|
auto* Y = Output(0);
|
|
Y->ResizeLike(X0);
|
|
const T* X0_data = X0.template data<T>();
|
|
T* Y_data = Y->template mutable_data<T>();
|
|
const int N = X0.numel();
|
|
if (InputSize() == 1) {
|
|
if (Y != &X0) {
|
|
context_.template CopySameDevice<T>(N, X0_data, Y_data);
|
|
}
|
|
return true;
|
|
}
|
|
const auto& X1 = Input(1);
|
|
CAFFE_ENFORCE_EQ(
|
|
X0.sizes(),
|
|
Y->sizes(),
|
|
"Description: Input #1, input dimension:",
|
|
X1.sizes(),
|
|
" should match output dimension: ",
|
|
Y->sizes());
|
|
const T* X1_data = X1.template data<T>();
|
|
math::Min<T, Context>(N, X0_data, X1_data, Y_data, &context_);
|
|
for (int i = 2; i < InputSize(); ++i) {
|
|
const auto& Xi = Input(i);
|
|
CAFFE_ENFORCE_EQ(
|
|
Xi.sizes(),
|
|
Y->sizes(),
|
|
"Description: Input #",
|
|
i,
|
|
", input dimension:",
|
|
Input(i).sizes(),
|
|
" should match output dimension: ",
|
|
Y->sizes());
|
|
const T* Xi_data = Xi.template data<T>();
|
|
math::Min<T, Context>(N, Y_data, Xi_data, Y_data, &context_);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <typename T, class Context>
|
|
class SelectGradientOpBase : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
USE_SIMPLE_CTOR_DTOR(SelectGradientOpBase)
|
|
|
|
bool RunOnDevice() override;
|
|
};
|
|
|
|
template <typename T, class Context>
|
|
class MaxGradientOp final : public SelectGradientOpBase<T, Context> {
|
|
public:
|
|
template <class... Args>
|
|
explicit MaxGradientOp(Args&&... args)
|
|
: SelectGradientOpBase<T, Context>(std::forward<Args>(args)...) {}
|
|
|
|
~MaxGradientOp() = default;
|
|
};
|
|
|
|
template <typename T, class Context>
|
|
class MinGradientOp final : public SelectGradientOpBase<T, Context> {
|
|
public:
|
|
template <class... Args>
|
|
explicit MinGradientOp(Args&&... args)
|
|
: SelectGradientOpBase<T, Context>(std::forward<Args>(args)...) {}
|
|
|
|
~MinGradientOp() = default;
|
|
};
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_OPERATORS_MINMAX_OPS_H_
|