mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Untyped decorators strip the types from their decorated function so even if the underlying function is fully typed then callers to it don't get any benefit from type annotations. Step 1 - Enable the error and override in all the offending files. #131429 Pull Request resolved: https://github.com/pytorch/pytorch/pull/131428 Approved by: https://github.com/justinchuby, https://github.com/oulgen
132 lines
5.1 KiB
Python
132 lines
5.1 KiB
Python
# mypy: allow-untyped-decorators
|
|
from typing import Callable, Iterable, Optional, Union
|
|
from typing_extensions import deprecated
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.distributed._composable.contract import contract
|
|
from torch.distributed._composable_state import _get_module_state, _insert_module_state
|
|
from torch.distributed.fsdp._common_utils import _FSDPState
|
|
from torch.distributed.fsdp._dynamo_utils import _annotate_modules_for_dynamo
|
|
from torch.distributed.fsdp._init_utils import (
|
|
_init_buffer_state,
|
|
_init_core_state,
|
|
_init_device_handle,
|
|
_init_ignored_module_states,
|
|
_init_param_handle_from_module,
|
|
_init_prefetching_state,
|
|
_init_process_group_state,
|
|
_init_runtime_state,
|
|
_init_state_dict_state,
|
|
HYBRID_SHARDING_STRATEGIES,
|
|
)
|
|
from torch.distributed.fsdp._runtime_utils import (
|
|
_register_post_forward_hook,
|
|
_register_pre_forward_hook,
|
|
_register_root_pre_forward_hook,
|
|
)
|
|
from torch.distributed.fsdp._state_dict_utils import _register_all_state_dict_hooks
|
|
from torch.distributed.fsdp._wrap_utils import _auto_wrap
|
|
from torch.distributed.fsdp.api import (
|
|
BackwardPrefetch,
|
|
CPUOffload,
|
|
MixedPrecision,
|
|
ShardingStrategy,
|
|
)
|
|
from torch.distributed.fsdp.wrap import _Policy
|
|
|
|
|
|
@contract(state_cls=_FSDPState)
|
|
@deprecated(
|
|
"`torch.distributed._composable.fully_shard` is being deprecated. "
|
|
"You can continue to use the wrapper based FSDP. "
|
|
"See usage in: https://github.com/pytorch/pytorch/blob/main/torch/distributed/fsdp/fully_sharded_data_parallel.py. "
|
|
"`torch.distributed._composable.fully_shard` will be removed after PyTorch 2.5.",
|
|
category=FutureWarning,
|
|
)
|
|
def fully_shard(
|
|
module: nn.Module,
|
|
*,
|
|
process_group: Optional[dist.ProcessGroup] = None,
|
|
policy: Optional[_Policy] = None,
|
|
strategy: Optional[ShardingStrategy] = None,
|
|
mixed_precision: Optional[MixedPrecision] = None,
|
|
cpu_offload: Optional[CPUOffload] = None,
|
|
ignored_modules: Optional[Iterable[torch.nn.Module]] = None,
|
|
device_id: Optional[Union[int, torch.device]] = None,
|
|
param_init_fn: Optional[Callable[[nn.Module], None]] = None,
|
|
sync_module_states: bool = False,
|
|
forward_prefetch: bool = False,
|
|
ignored_states: Union[
|
|
Optional[Iterable[torch.nn.Parameter]], Optional[Iterable[torch.nn.Module]]
|
|
] = None,
|
|
) -> nn.Module:
|
|
"""Applies ``FullyShardedDataParallel`` (FSDP) semantics to ``module``."""
|
|
torch._C._log_api_usage_once("torch.distributed.fully_shard")
|
|
# Enforce the new auto wrap policy
|
|
if policy is not None and not isinstance(policy, _Policy):
|
|
raise ValueError(f"Expects a `_Policy` but got {policy}")
|
|
state = fully_shard.state(module)
|
|
state = _init_ignored_module_states(state, module, ignored_modules, ignored_states)
|
|
state = _init_device_handle(state, module, state._ignored_params, device_id)
|
|
_annotate_modules_for_dynamo(module, state._ignored_modules, True)
|
|
state = _init_process_group_state(state, process_group, strategy, policy)
|
|
if policy is not None:
|
|
root_kwargs = {
|
|
"process_group": process_group,
|
|
"strategy": strategy,
|
|
"mixed_precision": mixed_precision,
|
|
"cpu_offload": cpu_offload,
|
|
"ignored_modules": ignored_modules,
|
|
"device_id": device_id,
|
|
"param_init_fn": param_init_fn,
|
|
"sync_module_states": sync_module_states,
|
|
"forward_prefetch": forward_prefetch,
|
|
"ignored_states": ignored_states,
|
|
}
|
|
if strategy in HYBRID_SHARDING_STRATEGIES:
|
|
root_kwargs["process_group"] = (state.process_group, state._inter_node_pg)
|
|
_auto_wrap(
|
|
module,
|
|
policy,
|
|
state._ignored_modules,
|
|
state._ignored_params,
|
|
root_kwargs,
|
|
fully_shard,
|
|
)
|
|
state = _init_core_state(
|
|
state,
|
|
strategy or ShardingStrategy.FULL_SHARD,
|
|
mixed_precision,
|
|
cpu_offload,
|
|
limit_all_gathers=True,
|
|
use_orig_params=True,
|
|
backward_prefetch_limit=1,
|
|
forward_prefetch_limit=1,
|
|
)
|
|
state = _init_runtime_state(state)
|
|
state = _init_prefetching_state(
|
|
state, BackwardPrefetch.BACKWARD_PRE, forward_prefetch=forward_prefetch
|
|
)
|
|
state = _init_buffer_state(state, module)
|
|
state = _init_param_handle_from_module(
|
|
state, module, device_id, param_init_fn, sync_module_states
|
|
)
|
|
state = _init_state_dict_state(state)
|
|
_register_all_state_dict_hooks(state)
|
|
_register_pre_forward_hook(state, module)
|
|
_register_post_forward_hook(state, module)
|
|
_register_root_pre_forward_hook(state, module) # prepend last
|
|
# Always insert the state for the passed-in module even if it has no
|
|
# managed parameters, in which case it has no handles and does not appear
|
|
# in `_fully_sharded_module_to_handles`
|
|
_insert_module_state(module, state)
|
|
for submodule in module.modules():
|
|
if (
|
|
submodule in state._fully_sharded_module_to_handle
|
|
and _get_module_state(submodule) is None
|
|
):
|
|
_insert_module_state(submodule, state)
|
|
return module
|