mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Context: Recently we've added a couple more kernel types support other than inductor generated triton kernels, such as cpu cpp kernels, extern kernels. The name appeared in tlparse chrome link can be confusing to users. Rename from `inductor_triton_kernel_to_post_grad_nodes.json` to `inductor_generated_kernel_to_post_grad_nodes.json` Test Plan: CI Differential Revision: D75159042 Pull Request resolved: https://github.com/pytorch/pytorch/pull/154046 Approved by: https://github.com/yushangdi
960 lines
32 KiB
Python
960 lines
32 KiB
Python
import collections
|
|
import contextlib
|
|
import copy
|
|
import dataclasses
|
|
import functools
|
|
import io
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import os
|
|
import os.path
|
|
import pickle
|
|
import pstats
|
|
import shutil
|
|
import traceback
|
|
from collections.abc import Iterator
|
|
from typing import Any, Callable, IO, Optional, Union
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
from functorch.compile import draw_graph, get_aot_graph_name, get_graph_being_compiled
|
|
from torch import fx as fx
|
|
from torch._dynamo.repro.after_aot import save_graph_repro
|
|
from torch._dynamo.utils import get_debug_dir
|
|
from torch._logging import getArtifactLogger
|
|
from torch.fx.graph_module import GraphModule
|
|
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
|
|
from torch.fx.passes.tools_common import legalize_graph
|
|
from torch.types import FileLike
|
|
from torch.utils._ordered_set import OrderedSet
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from . import config, ir # noqa: F811, this is needed
|
|
from .scheduler import (
|
|
BaseSchedulerNode,
|
|
FusedSchedulerNode,
|
|
NopKernelSchedulerNode,
|
|
OutputNode,
|
|
SchedulerNode,
|
|
)
|
|
from .virtualized import V
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
ir_pre_fusion_log = getArtifactLogger(__name__, "ir_pre_fusion")
|
|
ir_post_fusion_log = getArtifactLogger(__name__, "ir_post_fusion")
|
|
SchedulerNodeList = list[Any]
|
|
BufMeta = collections.namedtuple("BufMeta", ["name", "n_origin"])
|
|
GRAPHVIZ_COMMAND_SCALABLE = ["dot", "-Gnslimit=2", "-Gnslimit1=2", "-Gmaxiter=5000"]
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def has_dot() -> bool:
|
|
return shutil.which("dot") is not None
|
|
|
|
|
|
def draw_buffers(
|
|
nodes: list[BaseSchedulerNode],
|
|
print_graph: bool = False,
|
|
fname: Optional[str] = None,
|
|
) -> None:
|
|
"""
|
|
Draw a graph in fname.svg.
|
|
"""
|
|
if not has_dot():
|
|
log.warning("draw_buffers() requires `graphviz` package")
|
|
return
|
|
|
|
if fname is None:
|
|
fname = get_graph_being_compiled()
|
|
|
|
graph = create_fx_from_snodes(nodes)
|
|
|
|
for node in graph.nodes:
|
|
if "fusion_meta" not in node.meta:
|
|
continue
|
|
group = node.meta["fusion_meta"].group
|
|
if isinstance(group, tuple):
|
|
if isinstance(group[1], int):
|
|
group = (group[1],)
|
|
else:
|
|
group = group[1]
|
|
|
|
# gather meta data
|
|
dtype = None
|
|
if isinstance(node, ir.ComputedBuffer):
|
|
dtype = node.data.dtype
|
|
|
|
metadata = TensorMetadata(group, dtype, None, None, None, None, None) # type: ignore[arg-type]
|
|
node.meta["tensor_meta"] = metadata
|
|
|
|
if print_graph:
|
|
print(graph)
|
|
|
|
gm = GraphModule({}, graph)
|
|
legalize_graph(gm)
|
|
gm.graph.lint()
|
|
draw_graph(
|
|
gm, fname, clear_meta=False, dot_graph_shape=config.trace.dot_graph_shape
|
|
)
|
|
|
|
|
|
def create_fx_from_snodes(snodes: list[BaseSchedulerNode]) -> fx.Graph:
|
|
"""
|
|
Creates a FX Graph from a list of SchedulerNode objects.
|
|
"""
|
|
|
|
def get_fake_func(name: str) -> Callable[..., int]:
|
|
def func1(*args: Any) -> int:
|
|
return 0
|
|
|
|
func1.__name__ = name
|
|
return func1
|
|
|
|
FusionMeta = collections.namedtuple("FusionMeta", ["group", "snode", "type"])
|
|
|
|
buf_to_fx_node = {}
|
|
node_to_fx_node = {}
|
|
graph = torch.fx.Graph()
|
|
first_node = None
|
|
|
|
outputs = []
|
|
group: Any = None
|
|
# create call_function node for each Buffer and Kernel
|
|
for snode in snodes:
|
|
if snode.is_extern():
|
|
node_type = "extern"
|
|
group = node_type
|
|
elif snode.is_template():
|
|
node_type = "template"
|
|
group = node_type
|
|
elif isinstance(snode, NopKernelSchedulerNode):
|
|
node_type = "nop"
|
|
group = node_type
|
|
elif isinstance(snode, SchedulerNode):
|
|
node_type = "compute"
|
|
group = snode.group
|
|
elif isinstance(snode, FusedSchedulerNode):
|
|
node_type = "fused"
|
|
group = snode.group
|
|
else:
|
|
raise RuntimeError("Unknown node type")
|
|
|
|
fused_name = torch._inductor.utils.get_fused_kernel_name(
|
|
snode.get_nodes(), "original_aten"
|
|
)
|
|
func_name = f"{node_type}: {fused_name}"
|
|
node_func = get_fake_func(func_name)
|
|
kwargs = {}
|
|
if hasattr(snode, "get_device"):
|
|
kwargs = {"device": snode.get_device()}
|
|
fx_node = graph.call_function(node_func, args=(), kwargs=kwargs) # type: ignore[arg-type]
|
|
|
|
def in_output(snode: Union[BaseSchedulerNode, FusedSchedulerNode]) -> bool:
|
|
if isinstance(snode, FusedSchedulerNode):
|
|
return any(in_output(x) for x in snode.snodes)
|
|
return any(
|
|
isinstance(user.node, OutputNode)
|
|
for buf in snode.get_outputs()
|
|
for user in buf.users
|
|
)
|
|
|
|
if in_output(snode):
|
|
outputs.append(fx_node)
|
|
name = snode.get_name()
|
|
fx_node.name = name
|
|
|
|
fx_node.meta["fusion_meta"] = FusionMeta(group, snode, node_type)
|
|
|
|
node_to_fx_node[name] = fx_node
|
|
for buf in snode.get_outputs():
|
|
buf_to_fx_node[buf.get_name()] = fx_node
|
|
|
|
if first_node is None:
|
|
first_node = fx_node
|
|
|
|
# create edges between nodes
|
|
for snode in snodes:
|
|
name = snode.get_name()
|
|
deps = snode.read_writes.reads
|
|
|
|
fx_node = node_to_fx_node[name]
|
|
new_args = []
|
|
for dep in deps:
|
|
if dep.name in buf_to_fx_node:
|
|
dep_node = buf_to_fx_node[dep.name]
|
|
else:
|
|
with graph.inserting_before(first_node):
|
|
dep_node = graph.placeholder(dep.name)
|
|
buf_to_fx_node[dep.name] = dep_node
|
|
if dep_node == fx_node: # to avoid cycles
|
|
continue
|
|
new_args.append(dep_node)
|
|
|
|
fx_node.args = tuple(new_args)
|
|
|
|
graph.output(outputs[0] if len(outputs) == 1 else tuple(outputs))
|
|
return graph
|
|
|
|
|
|
def update_orig_fx_node_name_to_buf_name(
|
|
nodes: Optional[SchedulerNodeList],
|
|
node_name_to_buf_name: dict[str, str],
|
|
parent_buf_name: Optional[str] = None,
|
|
n_origins: int = 0,
|
|
) -> None:
|
|
if nodes is None:
|
|
return
|
|
for node in nodes:
|
|
# for FusedSchedulerNode, traverse recursively into get_nodes()
|
|
buf_name = node.get_name()
|
|
children_nodes = node.get_nodes()
|
|
if children_nodes is not None and len(children_nodes) > 1:
|
|
update_orig_fx_node_name_to_buf_name(
|
|
children_nodes,
|
|
node_name_to_buf_name,
|
|
buf_name if parent_buf_name is None else parent_buf_name,
|
|
)
|
|
continue
|
|
else:
|
|
assert len(children_nodes) == 1 and children_nodes[0] == node
|
|
|
|
ir_node = node.node
|
|
if ir_node is None or ir_node.origins is None:
|
|
continue
|
|
for origin in ir_node.origins:
|
|
node_name = origin.name
|
|
# when buf1 and buf2 both have origin=node1
|
|
# we draw node1 according to buf1
|
|
if node_name not in node_name_to_buf_name:
|
|
node_name_to_buf_name[node_name] = (
|
|
buf_name if parent_buf_name is None else parent_buf_name
|
|
)
|
|
|
|
|
|
def get_node_name_to_buf_meta(
|
|
node_name_to_buf_name: dict[str, str],
|
|
) -> dict[str, BufMeta]:
|
|
buf_name_to_n_node = {}
|
|
for node_name, buf_name in node_name_to_buf_name.items():
|
|
if buf_name not in buf_name_to_n_node:
|
|
buf_name_to_n_node[buf_name] = OrderedSet([node_name])
|
|
else:
|
|
buf_name_to_n_node[buf_name].add(node_name)
|
|
|
|
node_name_to_buf_meta = {}
|
|
for node_name, buf_name in node_name_to_buf_name.items():
|
|
n_node = len(buf_name_to_n_node[buf_name])
|
|
node_name_to_buf_meta[node_name] = BufMeta(buf_name, n_node)
|
|
return node_name_to_buf_meta
|
|
|
|
|
|
def annotate_orig_fx_with_snodes(
|
|
gm: torch.fx.GraphModule,
|
|
snodes: SchedulerNodeList,
|
|
) -> None:
|
|
"""
|
|
Creates a FX Graph from a list of SchedulerNode objects.
|
|
"""
|
|
node_name_to_buf_name: dict[str, str] = {}
|
|
update_orig_fx_node_name_to_buf_name(snodes, node_name_to_buf_name)
|
|
if node_name_to_buf_name is None:
|
|
return
|
|
node_name_to_buf_meta = get_node_name_to_buf_meta(node_name_to_buf_name)
|
|
for node in gm.graph.nodes:
|
|
if node.name in node_name_to_buf_meta:
|
|
node.meta["buf_meta"] = node_name_to_buf_meta.get(node.name)
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def enable_aot_logging() -> Iterator[None]:
|
|
compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
|
|
|
|
import torch._functorch.aot_autograd
|
|
|
|
log = logging.getLogger(torch._functorch.aot_autograd.__name__)
|
|
|
|
stack = contextlib.ExitStack()
|
|
if not compile_debug:
|
|
try:
|
|
yield
|
|
finally:
|
|
stack.close()
|
|
return
|
|
|
|
# Enable all graphs to be logged to a file by setting the flags to True
|
|
# and the log level of the file logger to DEBUG
|
|
stack.enter_context(patch("functorch.compile.config.debug_partitioner", True))
|
|
|
|
path = os.path.join(get_debug_dir(), "torchinductor")
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
fh = logging.FileHandler(
|
|
os.path.join(
|
|
path,
|
|
f"aot_{get_aot_graph_name()}_debug.log",
|
|
)
|
|
)
|
|
fh.setLevel(logging.DEBUG)
|
|
fh.setFormatter(
|
|
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
|
|
)
|
|
log.addHandler(fh)
|
|
try:
|
|
yield
|
|
finally:
|
|
log.removeHandler(fh)
|
|
stack.close()
|
|
|
|
|
|
# Used for provenance tracking
|
|
# They are not stored in DebugContext because they are not set in
|
|
# _inductor_triton_kernel_to_post_grad_node_info's Debug Context
|
|
_inductor_post_to_pre_grad_nodes: dict[str, Any] = {}
|
|
_pre_grad_graph_id: Optional[int] = None
|
|
|
|
|
|
class DebugContext:
|
|
_counter = itertools.count()
|
|
|
|
# Used for provenance tracking
|
|
_inductor_triton_kernel_to_post_grad_node_info: dict[str, list[str]] = {}
|
|
|
|
@staticmethod
|
|
def create_debug_dir(folder_name: str) -> Optional[str]:
|
|
debug_dir = config.trace.debug_dir or get_debug_dir()
|
|
for n in DebugContext._counter:
|
|
dirname = os.path.join(
|
|
debug_dir,
|
|
"torchinductor",
|
|
f"{folder_name}.{n}",
|
|
)
|
|
if not os.path.exists(dirname):
|
|
os.makedirs(dirname)
|
|
return dirname
|
|
return None
|
|
|
|
def __init__(self) -> None:
|
|
self._prof = None
|
|
self._path = None
|
|
self._stack = contextlib.ExitStack()
|
|
|
|
def copy(self, new_path: str) -> None:
|
|
if not self._path:
|
|
return
|
|
assert new_path.endswith(".debug"), new_path
|
|
from filelock import FileLock
|
|
|
|
try:
|
|
with FileLock(f"{new_path}.lock"):
|
|
if os.path.exists(new_path):
|
|
shutil.rmtree(new_path)
|
|
shutil.copytree(self._path, new_path)
|
|
except OSError:
|
|
log.warning(
|
|
"Failed to copy debug files from %s to %s", self._path, new_path
|
|
)
|
|
|
|
def fopen(
|
|
self,
|
|
filename: str,
|
|
write_mode: str = "w",
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> IO[Any]:
|
|
assert self._path
|
|
return open(os.path.join(self._path, filename), write_mode, *args, **kwargs)
|
|
|
|
@contextlib.contextmanager
|
|
def fopen_context(
|
|
self,
|
|
filename: str,
|
|
write_mode: str = "w",
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Iterator[IO[Any]]:
|
|
assert self._path
|
|
with open(os.path.join(self._path, filename), write_mode, *args, **kwargs) as f:
|
|
yield f
|
|
|
|
def filename(self, suffix: str) -> str:
|
|
assert self._path
|
|
return os.path.join(self._path, suffix)
|
|
|
|
def upload_tar(self) -> None:
|
|
if config.trace.upload_tar is not None:
|
|
import tarfile
|
|
|
|
assert self._path
|
|
tar_file = os.path.join(
|
|
self._path, f"{os.path.basename(self._path)}.tar.gz"
|
|
)
|
|
with tarfile.open(tar_file, "w:gz") as tar:
|
|
tar.add(self._path, arcname=os.path.basename(self._path))
|
|
config.trace.upload_tar(tar_file)
|
|
|
|
def __enter__(self) -> None:
|
|
if config.debug:
|
|
log = logging.getLogger("torch._dynamo")
|
|
prev_level = log.level
|
|
log.setLevel(logging.DEBUG)
|
|
|
|
def reset_log_level(level: Any) -> None:
|
|
log.setLevel(level)
|
|
|
|
self._stack.callback(reset_log_level, prev_level)
|
|
|
|
self._stack.enter_context(V.set_debug_handler(self))
|
|
|
|
if not config.trace.enabled:
|
|
return
|
|
|
|
self._path = self.create_debug_dir(get_aot_graph_name()) # type: ignore[assignment]
|
|
|
|
if config.trace.debug_log:
|
|
self._setup_log_capture("debug.log", logging.DEBUG)
|
|
if config.trace.info_log:
|
|
self._setup_log_capture("info.log", logging.INFO)
|
|
|
|
def _setup_log_capture(
|
|
self,
|
|
filename: str,
|
|
level: int,
|
|
) -> None:
|
|
log = logging.getLogger("torch._inductor")
|
|
fd = self._stack.enter_context(self.fopen(filename))
|
|
ch = logging.StreamHandler(fd)
|
|
ch.setLevel(level)
|
|
ch.setFormatter(
|
|
logging.Formatter("[%(filename)s:%(lineno)d %(levelname)s] %(message)s")
|
|
)
|
|
log.addHandler(ch)
|
|
log.setLevel(min(log.level, level))
|
|
self._stack.callback(log.removeHandler, ch)
|
|
|
|
def __exit__(
|
|
self,
|
|
exc_type: Optional[type[BaseException]],
|
|
exc_val: Optional[BaseException],
|
|
exc_tb: Optional[Any],
|
|
) -> None:
|
|
if self._prof:
|
|
self._prof.disable()
|
|
self._save_profile_data()
|
|
|
|
if self._path:
|
|
self.upload_tar()
|
|
log.warning("%s debug trace: %s", get_graph_being_compiled(), self._path)
|
|
self._stack.close()
|
|
|
|
def _save_profile_data(self) -> None:
|
|
assert self._prof
|
|
self._prof.dump_stats(self.filename("compile.prof"))
|
|
with self.fopen("compile.stats") as fd:
|
|
stats = pstats.Stats(self._prof, stream=fd)
|
|
stats.strip_dirs()
|
|
stats.sort_stats("cumtime")
|
|
stats.print_stats(100)
|
|
stats.sort_stats("tottime")
|
|
stats.print_stats(100)
|
|
|
|
def __getattr__(self, name: str) -> Optional[Callable[..., None]]:
|
|
if config.trace.enabled and getattr(config.trace, name):
|
|
try:
|
|
return getattr(DebugFormatter(self), name)
|
|
except Exception:
|
|
log.warning("Ignoring exception in debug code", exc_info=True)
|
|
return None
|
|
else:
|
|
|
|
def ignored(*args: Any, **kwargs: Any) -> None:
|
|
pass
|
|
|
|
return ignored
|
|
|
|
|
|
class DebugFormatter:
|
|
def __init__(self, handler: DebugContext) -> None:
|
|
self.fopen = handler.fopen
|
|
self.fopen_context = handler.fopen_context
|
|
self.filename = handler.filename
|
|
self.handler = handler
|
|
|
|
def fx_graph(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
inputs: list[torch.Tensor],
|
|
) -> None:
|
|
with self.fopen("fx_graph_runnable.py") as fd:
|
|
save_dir = None
|
|
if torch._inductor.config.trace.save_real_tensors:
|
|
inputs = torch._subclasses.fake_utils.try_convert_fake_to_real(inputs)
|
|
save_dir = os.path.dirname(fd.name)
|
|
|
|
# dont try to use stable hash torchinductor compilation if saving real tensors
|
|
# and avoid recursively trying to save real tensors inside of the inductor compilation
|
|
# regardless
|
|
stable_hash = torch._inductor.config.trace.save_real_tensors
|
|
with torch._inductor.config.patch(
|
|
{"trace.enabled": False, "trace.save_real_tensors": False}
|
|
):
|
|
save_graph_repro(
|
|
fd,
|
|
gm,
|
|
inputs,
|
|
"inductor",
|
|
save_dir=save_dir,
|
|
stable_hash=stable_hash,
|
|
)
|
|
|
|
with self.fopen("fx_graph_readable.py") as fd:
|
|
fd.write(gm.print_readable(print_output=False))
|
|
|
|
def fx_graph_transformed(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
inputs: list[torch.Tensor],
|
|
) -> None:
|
|
with self.fopen("fx_graph_transformed.py") as fd:
|
|
fd.write(gm.print_readable(print_output=False))
|
|
|
|
def ir_pre_fusion(self, nodes: SchedulerNodeList) -> None:
|
|
with self.fopen("ir_pre_fusion.txt") as fd:
|
|
fd.write(self._write_ir(nodes))
|
|
|
|
def ir_post_fusion(self, nodes: SchedulerNodeList) -> None:
|
|
with self.fopen("ir_post_fusion.txt") as fd:
|
|
fd.write(self._write_ir(nodes))
|
|
|
|
@staticmethod
|
|
def _write_ir(nodes: SchedulerNodeList) -> str:
|
|
buf = io.StringIO()
|
|
for node in nodes:
|
|
buf.write(node.debug_str())
|
|
buf.write("\n\n\n")
|
|
return buf.getvalue()
|
|
|
|
def graph_diagram(self, nodes: SchedulerNodeList) -> None:
|
|
draw_buffers(nodes, fname=self.filename("graph_diagram.svg"))
|
|
|
|
def draw_orig_fx_graph(
|
|
self,
|
|
gm: torch.fx.GraphModule,
|
|
nodes: SchedulerNodeList,
|
|
) -> None:
|
|
annotate_orig_fx_with_snodes(gm, nodes)
|
|
draw_graph(
|
|
gm,
|
|
fname=self.filename("orig_fx_graph_diagram.svg"),
|
|
clear_meta=False,
|
|
prog=GRAPHVIZ_COMMAND_SCALABLE,
|
|
parse_stack_trace=True,
|
|
dot_graph_shape=config.trace.dot_graph_shape,
|
|
)
|
|
|
|
def output_code(self, filename: str, extension: str = "py") -> None:
|
|
shutil.copy(filename, self.filename(f"output_code.{extension}"))
|
|
|
|
def log_inductor_triton_kernel_to_post_grad_node_info(
|
|
self, filename: str = "inductor_generated_kernel_to_post_grad_nodes.json"
|
|
) -> tuple[dict[str, list[str]], dict[str, Any]]:
|
|
debug_info = {}
|
|
with self.fopen(filename, "w") as fd:
|
|
log.info("Writing provenance tracing debugging info to %s", fd.name)
|
|
debug_info = DebugContext._inductor_triton_kernel_to_post_grad_node_info
|
|
json.dump(debug_info, fd)
|
|
node_mapping = {}
|
|
if _pre_grad_graph_id:
|
|
with self.fopen(
|
|
"inductor_provenance_tracking_node_mappings.json", "w"
|
|
) as fd:
|
|
node_mapping = create_node_mapping(
|
|
_pre_grad_graph_id, _inductor_post_to_pre_grad_nodes, debug_info
|
|
)
|
|
json.dump(node_mapping, fd)
|
|
return debug_info, node_mapping
|
|
|
|
def log_autotuning_results(
|
|
self,
|
|
name: str,
|
|
input_nodes: list[ir.IRNode],
|
|
timings: dict["ChoiceCaller", float], # type: ignore[name-defined] # noqa: F821
|
|
elapse: float,
|
|
precompile_elapse: float,
|
|
) -> None:
|
|
from .ir import FixedLayout
|
|
|
|
def build_node_info(node: ir.IRNode) -> dict[str, str]:
|
|
if hasattr(node, "name"):
|
|
node_name = node.name
|
|
else:
|
|
node_name = ""
|
|
node_info = {
|
|
"name": node_name,
|
|
"type": type(node).__name__,
|
|
}
|
|
try:
|
|
layout = node.get_output_spec()
|
|
if isinstance(layout, FixedLayout):
|
|
offset = 0
|
|
try:
|
|
offset = int(layout.offset)
|
|
except Exception:
|
|
try:
|
|
offset = V.graph.sizevars.size_hint(
|
|
layout.offset, fallback=0
|
|
)
|
|
except Exception:
|
|
pass
|
|
static_layout = FixedLayout(
|
|
layout.device,
|
|
dtype=layout.dtype,
|
|
size=[*V.graph.sizevars.size_hints(layout.size)],
|
|
stride=[*V.graph.sizevars.size_hints(layout.stride)],
|
|
offset=offset,
|
|
)
|
|
node_info["layout"] = str(static_layout)
|
|
else:
|
|
node_info["layout"] = str(layout)
|
|
except Exception:
|
|
pass
|
|
try:
|
|
node_info["dtype"] = str(node.get_dtype())
|
|
except Exception:
|
|
pass
|
|
try:
|
|
node_info["device"] = str(node.get_device())
|
|
except Exception:
|
|
pass
|
|
try:
|
|
node_info["stride"] = str(
|
|
V.graph.sizevars.size_hints(node.get_stride())
|
|
)
|
|
except Exception:
|
|
pass
|
|
try:
|
|
node_info["size"] = str(V.graph.sizevars.size_hints(node.get_size())) # type: ignore[arg-type]
|
|
except Exception:
|
|
pass
|
|
try:
|
|
node_info["numel"] = str(V.graph.sizevars.size_hint(node.get_numel()))
|
|
except Exception:
|
|
pass
|
|
if hasattr(node, "data") and isinstance(node.data, ir.IRNode):
|
|
node_info["data"] = build_node_info(node.data)
|
|
return node_info
|
|
|
|
general_properties = {
|
|
"op_name": name,
|
|
"cuda_device_name": torch.cuda.get_device_name(),
|
|
"cuda_device_count": torch.cuda.device_count(),
|
|
"input_nodes": [build_node_info(node) for node in input_nodes],
|
|
"autotuning_time": elapse,
|
|
"precompile_time": precompile_elapse,
|
|
}
|
|
with self.fopen_context(
|
|
"autotuning_result_json_list.txt", "at", encoding="utf-8"
|
|
) as fd:
|
|
for caller, time in timings.items():
|
|
info_dict = dict(caller.info_dict())
|
|
info_dict.update(general_properties)
|
|
info_dict["benchmark_result"] = time
|
|
json.dump(info_dict, fd)
|
|
fd.write("\n")
|
|
|
|
|
|
def log_ir_pre_fusion(nodes: SchedulerNodeList) -> None:
|
|
if ir_pre_fusion_log.isEnabledFor(logging.INFO):
|
|
ir_pre_fusion_log.info("BEFORE FUSION\n%s", DebugFormatter._write_ir(nodes))
|
|
|
|
V.debug.ir_pre_fusion(nodes)
|
|
|
|
|
|
def log_ir_post_fusion(nodes: SchedulerNodeList) -> None:
|
|
if ir_post_fusion_log.isEnabledFor(logging.INFO):
|
|
ir_post_fusion_log.info("AFTER FUSION\n%s", DebugFormatter._write_ir(nodes))
|
|
|
|
V.debug.ir_post_fusion(nodes)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class TensorMetadataHolder:
|
|
tensor_metadata: TensorMetadata
|
|
device: torch.device
|
|
|
|
|
|
save_args_cnt = itertools.count()
|
|
|
|
|
|
def create_node_mapping(
|
|
pre_grad_graph_id: int,
|
|
post_to_pre_grad_nodes_json: dict[str, Any],
|
|
triton_kernel_to_post_grad_json: dict[str, Any],
|
|
) -> dict[str, dict[str, Any]]:
|
|
"""Create bidirectional mappings between:
|
|
|
|
- pre_grad graph nodes and post_grad graph code nodes, and vice versa
|
|
- triton kernel name and post_grad graph code nodes, and vice versa
|
|
"""
|
|
|
|
# return a dummy dict if there's any error
|
|
empty_return: dict[str, dict[str, Any]] = {
|
|
"preToPost": {},
|
|
"postToPre": {},
|
|
"cppCodeToPost": {},
|
|
"postToCppCode": {},
|
|
}
|
|
|
|
log.info("Creating node mappings for provenance tracking")
|
|
|
|
if not isinstance(post_to_pre_grad_nodes_json, dict):
|
|
log.error("Provenance tacking error: post_to_pre_grad_nodes_json is not a dict")
|
|
return empty_return
|
|
|
|
if not isinstance(triton_kernel_to_post_grad_json, dict):
|
|
log.error(
|
|
"Provenance tacking error: triton_kernel_to_post_grad_json is not a dict"
|
|
)
|
|
return empty_return
|
|
|
|
if not isinstance(pre_grad_graph_id, int):
|
|
log.error("Provenance tacking error: pre_grad_graph_id is not an int")
|
|
return empty_return
|
|
|
|
pre_to_post: dict[str, Any] = collections.defaultdict(OrderedSet)
|
|
post_to_pre: dict[str, Any] = collections.defaultdict(OrderedSet)
|
|
|
|
post_to_cpp_code: dict[str, Any] = collections.defaultdict(OrderedSet)
|
|
|
|
try:
|
|
for outer_key, node_array in triton_kernel_to_post_grad_json.items():
|
|
if not isinstance(node_array, list):
|
|
log.error(
|
|
"Provenance tacking error: triton_kernel_to_post_grad_json value is not a list"
|
|
)
|
|
return empty_return
|
|
for curr_node in node_array:
|
|
post_to_cpp_code[curr_node].add(outer_key)
|
|
|
|
def check_format(node: dict[str, Any]) -> bool:
|
|
if not isinstance(node, dict):
|
|
log.error(
|
|
"Provenance tacking error: node provenance in post_to_pre_grad_nodes_json is not a dict"
|
|
)
|
|
return False
|
|
if "graph_id" not in node or "name" not in node or "from_node" not in node:
|
|
log.error(
|
|
"Provenance tacking error: node provenance in post_to_pre_grad_nodes_json has wrong format"
|
|
)
|
|
return False
|
|
return True
|
|
|
|
for outer_key, node_array in post_to_pre_grad_nodes_json.items():
|
|
if not isinstance(node_array, list):
|
|
log.error(
|
|
"Provenance tacking error: post_to_pre_grad_nodes_json value is not a list"
|
|
)
|
|
return empty_return
|
|
for node in node_array:
|
|
if not check_format(node):
|
|
return empty_return
|
|
# Check the current node first
|
|
if node.get("graph_id") == pre_grad_graph_id:
|
|
pre_to_post[node["name"]].add(outer_key)
|
|
post_to_pre[outer_key].add(node["name"])
|
|
|
|
# Check nested from_node array recursively, add node with the right graph_id to the map
|
|
stack = [(n, outer_key) for n in node.get("from_node", [])]
|
|
while stack:
|
|
current_node, parent_key = stack.pop()
|
|
if not check_format(current_node):
|
|
return empty_return
|
|
if current_node.get("graph_id") == pre_grad_graph_id:
|
|
pre_to_post[current_node["name"]].add(parent_key)
|
|
post_to_pre[parent_key].add(current_node["name"])
|
|
stack.extend(
|
|
(n, parent_key) for n in current_node.get("from_node", [])
|
|
)
|
|
|
|
def convert_sets_to_lists(d: dict[str, Any]) -> None:
|
|
for key in d:
|
|
d[key] = list(d[key])
|
|
d = dict(d)
|
|
|
|
# convert to list because set is not JSON serializable
|
|
convert_sets_to_lists(pre_to_post)
|
|
convert_sets_to_lists(post_to_pre)
|
|
convert_sets_to_lists(post_to_cpp_code)
|
|
return {
|
|
"preToPost": pre_to_post,
|
|
"postToPre": post_to_pre,
|
|
"cppCodeToPost": triton_kernel_to_post_grad_json,
|
|
"postToCppCode": post_to_cpp_code,
|
|
}
|
|
except Exception as e:
|
|
# Since this is just logging code, it should never interfere with regular
|
|
# program execution, so we use this try-except to guard against any error
|
|
log.error("Unexpected error in create_node_mapping: %s", e)
|
|
log.error("post_to_pre_grad_nodes_json: %s", post_to_pre_grad_nodes_json)
|
|
log.error(
|
|
"triton_kernel_to_post_grad_json: %s", triton_kernel_to_post_grad_json
|
|
)
|
|
log.error("pre_grad_graph_id: %s", pre_grad_graph_id)
|
|
log.error(traceback.format_exc())
|
|
return empty_return
|
|
|
|
|
|
def save_args_for_compile_fx_inner(*args: Any, **kwargs: Any) -> None:
|
|
"""
|
|
This function is used to save arguments for a compile_fx_inner function call
|
|
to the file system. Later on one can replay the compile_fx_inner call
|
|
with the saved arguments using load_args_and_run_compile_fx_inner.
|
|
"""
|
|
|
|
folder = "/tmp/inductor_saved_args"
|
|
if not os.path.exists(folder):
|
|
os.mkdir(folder)
|
|
|
|
def handle_tensor(x: Any) -> Any:
|
|
"""
|
|
Pickle FakeTensor will result in error:
|
|
AttributeError: Can't pickle local object 'WeakValueDictionary.__init__.<locals>.remove'
|
|
|
|
Convert all Tensor to metadata. This may also makes pickle faster.
|
|
"""
|
|
if isinstance(x, torch.Tensor):
|
|
return TensorMetadataHolder(_extract_tensor_metadata(x), x.device)
|
|
else:
|
|
return x
|
|
|
|
args_to_save, kwargs_to_save = tree_map(handle_tensor, (args, kwargs))
|
|
|
|
fn_name = "compile_fx_inner"
|
|
path = f"{folder}/{fn_name}_{next(save_args_cnt)}.pkl"
|
|
with open(path, "wb") as f:
|
|
pickle.dump((args_to_save, kwargs_to_save), f)
|
|
|
|
if log.isEnabledFor(logging.DEBUG):
|
|
message = f"""
|
|
Arguments for a compile_fx_inner call is saved to {path}. To replay the call,
|
|
run the following:
|
|
|
|
from torch._inductor.debug import load_args_and_run_compile_fx_inner
|
|
load_args_and_run_compile_fx_inner({path!r})
|
|
"""
|
|
# call print rather than log.debug. log.debug will print message
|
|
# prefix for each line which makes the code snippet harder to be
|
|
# copied.
|
|
# Not a big deal since the code is already been guarded by checking
|
|
# the log level.
|
|
print(message)
|
|
|
|
|
|
def load_args_and_run_compile_fx_inner(path: str) -> Any:
|
|
from torch._inductor.compile_fx import compile_fx_inner
|
|
|
|
with open(path, "rb") as f:
|
|
args, kwargs = pickle.load(f)
|
|
|
|
def handle_tensor(x: Any) -> Any:
|
|
if isinstance(x, TensorMetadataHolder):
|
|
return torch._dynamo.testing.rand_strided(
|
|
x.tensor_metadata.shape,
|
|
x.tensor_metadata.stride,
|
|
x.tensor_metadata.dtype,
|
|
x.device,
|
|
)
|
|
else:
|
|
return x
|
|
|
|
fake_mode = torch._subclasses.FakeTensorMode(allow_non_fake_inputs=True)
|
|
with fake_mode, config.patch("save_args", False):
|
|
args, kwargs = tree_map(handle_tensor, (args, kwargs))
|
|
return compile_fx_inner(*args, **kwargs)
|
|
|
|
|
|
def aot_inductor_minifier_wrapper(
|
|
func: Callable[..., str],
|
|
exported_program: torch.export.ExportedProgram,
|
|
*,
|
|
inductor_configs: dict[str, Any],
|
|
package_path: Optional[FileLike] = None,
|
|
) -> str:
|
|
from torch._dynamo.debug_utils import AccuracyError
|
|
from torch._dynamo.repro.aoti import dump_to_minify
|
|
from torch._inductor import config
|
|
from torch._inductor.compile_fx import _aoti_flatten_inputs
|
|
|
|
use_minifier = config.aot_inductor.dump_aoti_minifier
|
|
|
|
gm = exported_program.module()
|
|
assert isinstance(gm, torch.fx.GraphModule)
|
|
|
|
args, kwargs = exported_program.example_inputs
|
|
|
|
try:
|
|
if use_minifier and config.aot_inductor.repro_level == 3:
|
|
# Always dump the original module in case we have segfaults
|
|
dump_to_minify(
|
|
exported_program,
|
|
"aot_inductor",
|
|
options=inductor_configs,
|
|
)
|
|
if use_minifier and config.aot_inductor.repro_level == 4:
|
|
# Check for accuracy
|
|
# We will first flatten the inputs before compiling and checking for accuracy.
|
|
# This is ok because we will flatten the inputs in the minifier anyway.
|
|
gm_copy = copy.deepcopy(gm)
|
|
example_inputs_copy = copy.deepcopy(exported_program.example_inputs)
|
|
config_copy = copy.deepcopy(inductor_configs)
|
|
flat_example_inputs, config_copy = _aoti_flatten_inputs(
|
|
gm_copy,
|
|
example_inputs_copy[0],
|
|
example_inputs_copy[1],
|
|
options=config_copy,
|
|
)
|
|
tuple_inputs = tuple(flat_example_inputs)
|
|
flattened_ep = torch.export.export(gm_copy, tuple_inputs, strict=False)
|
|
func(
|
|
flattened_ep.module(),
|
|
tuple_inputs,
|
|
inductor_configs=config_copy,
|
|
package_path=package_path,
|
|
load_and_run=True,
|
|
check_accuracy="accuracy",
|
|
)
|
|
|
|
return func(
|
|
gm,
|
|
args,
|
|
kwargs,
|
|
inductor_configs=inductor_configs,
|
|
package_path=package_path,
|
|
load_and_run=use_minifier,
|
|
)
|
|
except AccuracyError as e:
|
|
dump_to_minify(
|
|
exported_program,
|
|
"aot_inductor_accuracy",
|
|
command="minify",
|
|
options=inductor_configs,
|
|
)
|
|
log.warning("Accuracy failed")
|
|
raise e
|
|
except Exception as e:
|
|
if use_minifier:
|
|
command = "minify"
|
|
|
|
if config.aot_inductor.repro_level == 1:
|
|
command = "run"
|
|
|
|
dump_to_minify(
|
|
exported_program,
|
|
"aot_inductor",
|
|
command=command,
|
|
options=inductor_configs,
|
|
)
|
|
raise e
|