mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62336 This PR was generated by removing `const` for all types of nodes in NNC IR, and fixing compilation errors that were the result of this change. This is the first step in making all NNC mutations in-place. Test Plan: Imported from OSS Reviewed By: iramazanli Differential Revision: D30049829 Pulled By: navahgar fbshipit-source-id: ed14e2d2ca0559ffc0b92ac371f405579c85dd63
230 lines
5.9 KiB
C++
230 lines
5.9 KiB
C++
#include <torch/csrc/jit/tensorexpr/ir.h>
|
|
|
|
#include <torch/csrc/jit/tensorexpr/tensor.h>
|
|
|
|
#include <c10/util/irange.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace tensorexpr {
|
|
|
|
static Dtype ChooseDtype(const Dtype& buffer_dtype, const Dtype& index_dtype) {
|
|
return Dtype(buffer_dtype, index_dtype.lanes());
|
|
}
|
|
|
|
static Dtype dtypeOfIndices(const std::vector<Expr*>& indices) {
|
|
if (!indices.size()) {
|
|
// Return something so we can handle scalar buffers.
|
|
return kInt;
|
|
}
|
|
return indices.at(0)->dtype();
|
|
}
|
|
|
|
void castIndicesToInts(std::vector<Expr*>& indices) {
|
|
// Cast all indices to either Int or Long
|
|
auto index_dtype = ScalarType::Int;
|
|
for (auto& index : indices) {
|
|
if (index->dtype().scalar_type() == ScalarType::Long) {
|
|
// If any of the indexes is Long, cast all of them to Long
|
|
index_dtype = ScalarType::Long;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (auto& index : indices) {
|
|
const Dtype& dt = index->dtype();
|
|
if (c10::isIntegralType(dt.scalar_type(), true) &&
|
|
dt.scalar_type() != index_dtype) {
|
|
index = new Cast(Dtype(index_dtype, dt.lanes()), index);
|
|
}
|
|
}
|
|
}
|
|
|
|
Load::Load(Dtype dtype, Buf* buf, std::vector<Expr*> indices)
|
|
: ExprNodeBase(dtype), buf_(buf), indices_(std::move(indices)) {
|
|
castIndicesToInts(indices_);
|
|
}
|
|
|
|
Load::Load(Buf* buf, const std::vector<Expr*>& indices)
|
|
: Load(ChooseDtype(buf->dtype(), dtypeOfIndices(indices)), buf, indices) {}
|
|
|
|
ExprHandle Load::make(
|
|
Dtype dtype,
|
|
const BufHandle& buf,
|
|
const std::vector<ExprHandle>& indices) {
|
|
return ExprHandle(
|
|
new Load(dtype, buf.node(), ExprHandleVectorToExprVector(indices)));
|
|
}
|
|
|
|
ExprHandle Load::make(
|
|
const BufHandle& buf,
|
|
const std::vector<ExprHandle>& indices) {
|
|
return Load::make(buf.dtype(), buf, indices);
|
|
}
|
|
|
|
Store::Store(Buf* buf, std::vector<Expr*> indices, Expr* value)
|
|
: buf_(buf), indices_(std::move(indices)), value_(value) {
|
|
castIndicesToInts(indices_);
|
|
}
|
|
|
|
Store* Store::make(
|
|
const BufHandle& buf,
|
|
const std::vector<ExprHandle>& indices,
|
|
const ExprHandle& value) {
|
|
return new Store(
|
|
buf.node(), ExprHandleVectorToExprVector(indices), value.node());
|
|
}
|
|
|
|
Expr* flatten_index(
|
|
const std::vector<Expr*>& dims,
|
|
const std::vector<Expr*>& indices) {
|
|
// Handle already flattened indices first
|
|
if (indices.size() == 1) {
|
|
return indices[0];
|
|
}
|
|
|
|
size_t ndim = dims.size();
|
|
if (ndim != indices.size()) {
|
|
throw malformed_input("dimensions mismatch in flatten_index");
|
|
}
|
|
if (ndim == 0) {
|
|
return new IntImm(0);
|
|
}
|
|
std::vector<Expr*> strides(ndim);
|
|
// stride[i] = stride[i+1]*dims[i+1], i < ndim-1
|
|
// stride[i] = 1, i = ndim-1
|
|
strides[ndim - 1] = new IntImm(1);
|
|
for (size_t i = 1; i < ndim; i++) {
|
|
strides[ndim - 1 - i] = new Mul(strides[ndim - i], dims[ndim - i]);
|
|
}
|
|
|
|
Expr* total_index = new IntImm(0);
|
|
for (auto i : c10::irange(ndim)) {
|
|
total_index = new Add(total_index, new Mul(indices[i], strides[i]));
|
|
}
|
|
return total_index;
|
|
}
|
|
|
|
Dtype Intrinsics::IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1) {
|
|
if (op_type == kIsNan) {
|
|
return dt1.cloneWithScalarType(ScalarType::Int);
|
|
}
|
|
// TODO: check the op_type and make a real decision
|
|
return dt1;
|
|
}
|
|
|
|
Dtype Intrinsics::IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1, Dtype dt2) {
|
|
// TODO: check the op_type and make a real decision
|
|
return dt1;
|
|
}
|
|
|
|
Dtype Intrinsics::IntrinsicsDtype(
|
|
IntrinsicsOp op_type,
|
|
const std::vector<Expr*>& params) {
|
|
// TODO: check the op_type and make a real decision
|
|
// Doesnt this fail with kRand?
|
|
if (params.size() == 0) {
|
|
throw malformed_input("invalid params in Intrinsics");
|
|
} else if (params.size() == 1) {
|
|
return IntrinsicsDtype(op_type, params[0]->dtype());
|
|
} else if (params.size() == 2) {
|
|
return IntrinsicsDtype(op_type, params[0]->dtype(), params[1]->dtype());
|
|
}
|
|
return params[0]->dtype();
|
|
}
|
|
|
|
int Intrinsics::OpArgCount(IntrinsicsOp op_type) {
|
|
switch (op_type) {
|
|
case kSin:
|
|
case kCos:
|
|
case kTan:
|
|
case kAsin:
|
|
case kAcos:
|
|
case kAtan:
|
|
case kSinh:
|
|
case kCosh:
|
|
case kTanh:
|
|
case kSigmoid:
|
|
case kExp:
|
|
case kExpm1:
|
|
case kAbs:
|
|
case kLog:
|
|
case kLog2:
|
|
case kLog10:
|
|
case kLog1p:
|
|
case kErf:
|
|
case kErfc:
|
|
case kSqrt:
|
|
case kRsqrt:
|
|
case kCeil:
|
|
case kFloor:
|
|
case kRound:
|
|
case kTrunc:
|
|
case kFrac:
|
|
case kLgamma:
|
|
case kIsNan:
|
|
return 1;
|
|
case kRand:
|
|
return 0;
|
|
case kAtan2:
|
|
case kFmod:
|
|
case kPow:
|
|
case kRemainder:
|
|
return 2;
|
|
default:
|
|
throw std::runtime_error("invalid op_type: " + c10::to_string(op_type));
|
|
}
|
|
}
|
|
|
|
ExternalCall* ExternalCall::make(
|
|
BufHandle buf,
|
|
const std::string& func_name,
|
|
const std::vector<BufHandle>& buf_args,
|
|
const std::vector<ExprHandle>& args) {
|
|
std::vector<Buf*> buf_arg_nodes;
|
|
buf_arg_nodes.reserve(buf_args.size());
|
|
for (const BufHandle& buf_arg : buf_args) {
|
|
buf_arg_nodes.push_back(buf_arg.node());
|
|
}
|
|
return new ExternalCall(
|
|
buf.node(), func_name, buf_arg_nodes, ExprHandleVectorToExprVector(args));
|
|
}
|
|
|
|
std::vector<Expr*> ExprHandleVectorToExprVector(
|
|
const std::vector<ExprHandle>& v) {
|
|
std::vector<Expr*> result(v.size());
|
|
for (auto i : c10::irange(v.size())) {
|
|
result[i] = v[i].node();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<ExprHandle> ExprVectorToExprHandleVector(
|
|
const std::vector<Expr*>& v) {
|
|
std::vector<ExprHandle> result(v.size());
|
|
for (auto i : c10::irange(v.size())) {
|
|
result[i] = ExprHandle(v[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<Var*> VarHandleVectorToVarVector(const std::vector<VarHandle>& v) {
|
|
std::vector<Var*> result(v.size());
|
|
for (auto i : c10::irange(v.size())) {
|
|
result[i] = v[i].node();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<VarHandle> VarVectorToVarHandleVector(const std::vector<Var*>& v) {
|
|
std::vector<VarHandle> result(v.size());
|
|
for (auto i : c10::irange(v.size())) {
|
|
result[i] = VarHandle(v[i]);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
} // namespace tensorexpr
|
|
} // namespace jit
|
|
} // namespace torch
|