pytorch/torch/csrc/jit/tensorexpr/ir.cpp
Raghavan Raman 59dd12042e [nnc] Removed const from all fields in IR. (#62336)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62336

This PR was generated by removing `const` for all types of nodes in NNC IR, and fixing compilation errors that were the result of this change.

This is the first step in making all NNC mutations in-place.

Test Plan: Imported from OSS

Reviewed By: iramazanli

Differential Revision: D30049829

Pulled By: navahgar

fbshipit-source-id: ed14e2d2ca0559ffc0b92ac371f405579c85dd63
2021-08-03 11:44:36 -07:00

230 lines
5.9 KiB
C++

#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
namespace tensorexpr {
static Dtype ChooseDtype(const Dtype& buffer_dtype, const Dtype& index_dtype) {
return Dtype(buffer_dtype, index_dtype.lanes());
}
static Dtype dtypeOfIndices(const std::vector<Expr*>& indices) {
if (!indices.size()) {
// Return something so we can handle scalar buffers.
return kInt;
}
return indices.at(0)->dtype();
}
void castIndicesToInts(std::vector<Expr*>& indices) {
// Cast all indices to either Int or Long
auto index_dtype = ScalarType::Int;
for (auto& index : indices) {
if (index->dtype().scalar_type() == ScalarType::Long) {
// If any of the indexes is Long, cast all of them to Long
index_dtype = ScalarType::Long;
break;
}
}
for (auto& index : indices) {
const Dtype& dt = index->dtype();
if (c10::isIntegralType(dt.scalar_type(), true) &&
dt.scalar_type() != index_dtype) {
index = new Cast(Dtype(index_dtype, dt.lanes()), index);
}
}
}
Load::Load(Dtype dtype, Buf* buf, std::vector<Expr*> indices)
: ExprNodeBase(dtype), buf_(buf), indices_(std::move(indices)) {
castIndicesToInts(indices_);
}
Load::Load(Buf* buf, const std::vector<Expr*>& indices)
: Load(ChooseDtype(buf->dtype(), dtypeOfIndices(indices)), buf, indices) {}
ExprHandle Load::make(
Dtype dtype,
const BufHandle& buf,
const std::vector<ExprHandle>& indices) {
return ExprHandle(
new Load(dtype, buf.node(), ExprHandleVectorToExprVector(indices)));
}
ExprHandle Load::make(
const BufHandle& buf,
const std::vector<ExprHandle>& indices) {
return Load::make(buf.dtype(), buf, indices);
}
Store::Store(Buf* buf, std::vector<Expr*> indices, Expr* value)
: buf_(buf), indices_(std::move(indices)), value_(value) {
castIndicesToInts(indices_);
}
Store* Store::make(
const BufHandle& buf,
const std::vector<ExprHandle>& indices,
const ExprHandle& value) {
return new Store(
buf.node(), ExprHandleVectorToExprVector(indices), value.node());
}
Expr* flatten_index(
const std::vector<Expr*>& dims,
const std::vector<Expr*>& indices) {
// Handle already flattened indices first
if (indices.size() == 1) {
return indices[0];
}
size_t ndim = dims.size();
if (ndim != indices.size()) {
throw malformed_input("dimensions mismatch in flatten_index");
}
if (ndim == 0) {
return new IntImm(0);
}
std::vector<Expr*> strides(ndim);
// stride[i] = stride[i+1]*dims[i+1], i < ndim-1
// stride[i] = 1, i = ndim-1
strides[ndim - 1] = new IntImm(1);
for (size_t i = 1; i < ndim; i++) {
strides[ndim - 1 - i] = new Mul(strides[ndim - i], dims[ndim - i]);
}
Expr* total_index = new IntImm(0);
for (auto i : c10::irange(ndim)) {
total_index = new Add(total_index, new Mul(indices[i], strides[i]));
}
return total_index;
}
Dtype Intrinsics::IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1) {
if (op_type == kIsNan) {
return dt1.cloneWithScalarType(ScalarType::Int);
}
// TODO: check the op_type and make a real decision
return dt1;
}
Dtype Intrinsics::IntrinsicsDtype(IntrinsicsOp op_type, Dtype dt1, Dtype dt2) {
// TODO: check the op_type and make a real decision
return dt1;
}
Dtype Intrinsics::IntrinsicsDtype(
IntrinsicsOp op_type,
const std::vector<Expr*>& params) {
// TODO: check the op_type and make a real decision
// Doesnt this fail with kRand?
if (params.size() == 0) {
throw malformed_input("invalid params in Intrinsics");
} else if (params.size() == 1) {
return IntrinsicsDtype(op_type, params[0]->dtype());
} else if (params.size() == 2) {
return IntrinsicsDtype(op_type, params[0]->dtype(), params[1]->dtype());
}
return params[0]->dtype();
}
int Intrinsics::OpArgCount(IntrinsicsOp op_type) {
switch (op_type) {
case kSin:
case kCos:
case kTan:
case kAsin:
case kAcos:
case kAtan:
case kSinh:
case kCosh:
case kTanh:
case kSigmoid:
case kExp:
case kExpm1:
case kAbs:
case kLog:
case kLog2:
case kLog10:
case kLog1p:
case kErf:
case kErfc:
case kSqrt:
case kRsqrt:
case kCeil:
case kFloor:
case kRound:
case kTrunc:
case kFrac:
case kLgamma:
case kIsNan:
return 1;
case kRand:
return 0;
case kAtan2:
case kFmod:
case kPow:
case kRemainder:
return 2;
default:
throw std::runtime_error("invalid op_type: " + c10::to_string(op_type));
}
}
ExternalCall* ExternalCall::make(
BufHandle buf,
const std::string& func_name,
const std::vector<BufHandle>& buf_args,
const std::vector<ExprHandle>& args) {
std::vector<Buf*> buf_arg_nodes;
buf_arg_nodes.reserve(buf_args.size());
for (const BufHandle& buf_arg : buf_args) {
buf_arg_nodes.push_back(buf_arg.node());
}
return new ExternalCall(
buf.node(), func_name, buf_arg_nodes, ExprHandleVectorToExprVector(args));
}
std::vector<Expr*> ExprHandleVectorToExprVector(
const std::vector<ExprHandle>& v) {
std::vector<Expr*> result(v.size());
for (auto i : c10::irange(v.size())) {
result[i] = v[i].node();
}
return result;
}
std::vector<ExprHandle> ExprVectorToExprHandleVector(
const std::vector<Expr*>& v) {
std::vector<ExprHandle> result(v.size());
for (auto i : c10::irange(v.size())) {
result[i] = ExprHandle(v[i]);
}
return result;
}
std::vector<Var*> VarHandleVectorToVarVector(const std::vector<VarHandle>& v) {
std::vector<Var*> result(v.size());
for (auto i : c10::irange(v.size())) {
result[i] = v[i].node();
}
return result;
}
std::vector<VarHandle> VarVectorToVarHandleVector(const std::vector<Var*>& v) {
std::vector<VarHandle> result(v.size());
for (auto i : c10::irange(v.size())) {
result[i] = VarHandle(v[i]);
}
return result;
}
} // namespace tensorexpr
} // namespace jit
} // namespace torch