mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22727 Differential Revision: D16197603 Test Plan: Imported from OSS Pulled By: suo fbshipit-source-id: 3eaefe6f229032b109d63a151fe0a20268b5cf56
377 lines
12 KiB
C++
377 lines
12 KiB
C++
#include <c10/util/Exception.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
#include <torch/csrc/jit/export.h>
|
|
#include <torch/csrc/jit/operator.h>
|
|
#include <torch/csrc/jit/passes/dead_code_elimination.h>
|
|
#include <torch/csrc/jit/script/compiler.h>
|
|
#include <torch/csrc/jit/script/error_report.h>
|
|
#include <torch/csrc/jit/script/module.h>
|
|
#include <torch/csrc/jit/script/schema_matching.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace script {
|
|
|
|
static ModulePtr create_module_object(
|
|
c10::QualifiedName class_name,
|
|
std::shared_ptr<CompilationUnit> cu) {
|
|
auto cls = ClassType::create(std::move(class_name), cu, /*is_module=*/true);
|
|
return c10::ivalue::Object::create(
|
|
c10::StrongTypePtr(std::move(cu), std::move(cls)), 0);
|
|
}
|
|
|
|
Module::Module(c10::QualifiedName class_name)
|
|
: module_value_(create_module_object( std::move(class_name), std::make_shared<CompilationUnit>())) {}
|
|
|
|
Module::Module(
|
|
c10::QualifiedName class_name,
|
|
std::shared_ptr<CompilationUnit> cu)
|
|
: module_value_(
|
|
create_module_object(std::move(class_name), std::move(cu))) {}
|
|
|
|
ModulePtr Module::module_object() const {
|
|
if (!module_value_) {
|
|
// User has created a Model without assigning it to something already
|
|
// loaded. This is done in tests, and when using the .define method.
|
|
module_value_ = create_module_object("__main__", std::make_shared<CompilationUnit>());
|
|
}
|
|
return module_value_;
|
|
}
|
|
|
|
// first class mode runs models as first class objects,
|
|
// and does not force inlining everywhere. This is experimental
|
|
// as we bring up the system since it will degrade performance
|
|
// and may introduce bugs. test_jit.py provides context managers
|
|
// that enable it for specific tests.
|
|
thread_local bool inline_everything = true;
|
|
bool& getInlineEverythingMode() {
|
|
return inline_everything;
|
|
}
|
|
|
|
void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) {
|
|
to_impl(device, dtype, non_blocking);
|
|
}
|
|
|
|
void Module::to(at::ScalarType dtype, bool non_blocking) {
|
|
to_impl(/*device=*/c10::nullopt, dtype, non_blocking);
|
|
}
|
|
|
|
void Module::to(at::Device device, bool non_blocking) {
|
|
to_impl(device, /*dtype=*/c10::nullopt, non_blocking);
|
|
}
|
|
|
|
void Module::save(std::ostream& out, const ExtraFilesMap& extra_files) const {
|
|
ExportModule(*this, out, extra_files);
|
|
}
|
|
|
|
void Module::save(const std::string& filename, const ExtraFilesMap& extra_files)
|
|
const {
|
|
ExportModule(*this, filename, extra_files);
|
|
}
|
|
|
|
void module_state_to(
|
|
const Slot& s,
|
|
const c10::optional<at::Device>& device,
|
|
const c10::optional<at::ScalarType>& dtype,
|
|
bool non_blocking) {
|
|
// Need to access the `at::Tensor` as a `Variable` here.
|
|
autograd::Variable variable = s.value().toTensor();
|
|
// Use the data's original device or dtype if not supplied here.
|
|
auto new_data = variable.to(
|
|
device.value_or(variable.device()),
|
|
dtype.value_or(variable.scalar_type()),
|
|
non_blocking);
|
|
variable.set_data(new_data);
|
|
}
|
|
|
|
void Module::to_impl(
|
|
const c10::optional<at::Device>& device,
|
|
const c10::optional<at::ScalarType>& dtype,
|
|
bool non_blocking) {
|
|
// First call `to()` on every child module.
|
|
for (Module child : get_modules()) {
|
|
child.to_impl(device, dtype, non_blocking);
|
|
}
|
|
// Then convert every of our parameters.
|
|
for (Slot parameter : get_parameters()) {
|
|
module_state_to(parameter, device, dtype, non_blocking);
|
|
}
|
|
// Then convert every tensor attributes (buffers).
|
|
for (Slot attr : get_attributes()) {
|
|
if (attr.type()->isSubtypeOf(TensorType::get())) {
|
|
module_state_to(attr, device, dtype, non_blocking);
|
|
}
|
|
}
|
|
}
|
|
|
|
// remove the first module argument, replacing any access of its
|
|
// parameters/attributes with extra_ivalue input Slots that hold what value to
|
|
// pass into the graph. Used for ONNX export to remove first-class modules
|
|
// so it can deal purely with parameters and inputs
|
|
std::pair<std::shared_ptr<Graph>, std::vector<Slot>> lower_graph(
|
|
const ModulePtr& self,
|
|
Graph& g_,
|
|
size_t self_offset = 0) {
|
|
std::shared_ptr<Graph> g = g_.copy();
|
|
std::vector<Slot> extra_ivalues;
|
|
std::unordered_map<Slot, size_t> slot_to_offset;
|
|
struct ToScan {
|
|
ModulePtr mod;
|
|
Node* n;
|
|
size_t offset;
|
|
};
|
|
std::vector<ToScan> to_scan;
|
|
std::vector<Node*> to_clean; // nodes that should be dead at the end
|
|
|
|
auto getOrAddSlot = [&](const Slot& slot) -> Value* {
|
|
auto it = slot_to_offset.find(slot);
|
|
if (it != slot_to_offset.end()) {
|
|
size_t ivalues_start = g->inputs().size() - extra_ivalues.size();
|
|
return g->inputs().at(ivalues_start + it->second);
|
|
}
|
|
extra_ivalues.emplace_back(slot);
|
|
slot_to_offset[slot] = extra_ivalues.size() - 1;
|
|
return g->addInput()->setType(slot.type());
|
|
};
|
|
|
|
auto self_value = g->inputs().at(self_offset);
|
|
|
|
for (Use use : self_value->uses()) {
|
|
to_scan.emplace_back(ToScan{self, use.user, use.offset});
|
|
}
|
|
while (to_scan.size() > 0) {
|
|
auto e = to_scan.back();
|
|
to_scan.pop_back();
|
|
|
|
// when we lambda lift forks, first-class modules may be passed across
|
|
// forks. This code recursively lowers the module in the fork call.
|
|
if (e.n->kind() == prim::fork) {
|
|
auto subgraph = e.n->g(attr::Subgraph);
|
|
std::vector<Slot> new_slots;
|
|
std::tie(subgraph, new_slots) = lower_graph(e.mod, *subgraph, e.offset);
|
|
e.n->g_(attr::Subgraph, subgraph);
|
|
for (const Slot& slot : new_slots) {
|
|
e.n->addInput(getOrAddSlot(slot));
|
|
}
|
|
e.n->removeInput(e.offset);
|
|
continue;
|
|
}
|
|
if (e.n->kind() != prim::GetAttr) {
|
|
throw ErrorReport(e.n->sourceRange())
|
|
<< "temporary: the only valid use of a module is looking up an "
|
|
"attribute but found "
|
|
<< *e.n;
|
|
}
|
|
Slot slot(e.mod, e.mod->type()->getAttributeSlot(e.n->s(attr::name)));
|
|
if (ClassTypePtr c = e.n->output()->type()->cast<ClassType>()) {
|
|
if (c->is_module()) {
|
|
auto obj = slot.value().toObject();
|
|
for (Use use : e.n->output()->uses()) {
|
|
to_scan.emplace_back(ToScan{obj, use.user, use.offset});
|
|
}
|
|
to_clean.emplace_back(e.n);
|
|
continue;
|
|
}
|
|
}
|
|
e.n->output()->replaceAllUsesWith(getOrAddSlot(slot));
|
|
e.n->destroy();
|
|
}
|
|
|
|
while (to_clean.size() > 0) {
|
|
Node* n = to_clean.back();
|
|
AT_ASSERT(!n->hasUses());
|
|
n->destroy();
|
|
to_clean.pop_back();
|
|
}
|
|
AT_ASSERT(!self_value->hasUses());
|
|
g->eraseInput(self_offset);
|
|
|
|
return std::make_pair(std::move(g), std::move(extra_ivalues));
|
|
}
|
|
|
|
Method::Method(ModulePtr owner, Function* function)
|
|
: owner_(std::move(owner)), function_(function) {}
|
|
|
|
Module Method::owner() const {
|
|
return Module(owner_);
|
|
}
|
|
void Method::run(Stack& stack) {
|
|
stack.insert(stack.begin(), owner().module_object());
|
|
function_->run(stack);
|
|
}
|
|
|
|
IValue Method::operator()(std::vector<IValue> stack, const Kwargs& kwargs) {
|
|
stack.insert(stack.begin(), owner().module_object());
|
|
return (*function_)(std::move(stack), kwargs);
|
|
}
|
|
|
|
static std::vector<at::Tensor> loadTensors(const std::vector<Slot>& slots) {
|
|
std::vector<at::Tensor> result;
|
|
result.reserve(slots.size());
|
|
for(const Slot& slot : slots) {
|
|
result.emplace_back(slot.value().toTensor());
|
|
}
|
|
return result;
|
|
}
|
|
std::pair<std::shared_ptr<Graph>, std::vector<at::Tensor>> Method::_lowered_graph() {
|
|
auto result = lower_graph(owner().module_object(), *graph());
|
|
return std::make_pair(result.first, loadTensors(result.second));
|
|
}
|
|
|
|
static void clearMethods(c10::ivalue::Object* self) {
|
|
self->compilation_unit()->drop_all_functions();
|
|
}
|
|
|
|
void Module::define(const std::string& src, const ResolverPtr& resolver) {
|
|
const auto self = SimpleSelf(type());
|
|
class_compilation_unit()->define(
|
|
name(), src, resolver ? resolver : script::nativeResolver(), &self);
|
|
}
|
|
|
|
void Module::copy_into(
|
|
const ModuleLookup& module_lookup,
|
|
// translate current module singleton type to new module
|
|
// singleton type.
|
|
std::unordered_map<TypePtr, TypePtr>& type_remap,
|
|
std::vector<std::string> names) const {
|
|
auto curr = module_lookup(names);
|
|
type_remap[module_object()->type()] = curr.module_object()->type();
|
|
|
|
for (Slot s : curr.get_slots()) {
|
|
if (s.is_module()) {
|
|
names.push_back(s.name());
|
|
// Submodules must be translated first, otherwise parameter_remap entries
|
|
// will not be filled in for methods of this module.
|
|
s.to_module().copy_into(module_lookup, type_remap, names);
|
|
names.pop_back();
|
|
} else {
|
|
curr.set_or_add_slot(s.name(), s.type(), s.value(), s.entity_type());
|
|
}
|
|
}
|
|
|
|
for (auto& fn : class_compilation_unit()->get_functions()) {
|
|
curr.clone_method(*this, fn->qualname(), type_remap);
|
|
}
|
|
}
|
|
|
|
void Module::clone_method(
|
|
const Module& orig,
|
|
const QualifiedName& orig_method_name,
|
|
const std::unordered_map<TypePtr, TypePtr>& type_remap) {
|
|
// type remapping - when we copy method implementations from one module
|
|
// singleton to another, we need to update the types of the self arguments
|
|
// to match the new module.
|
|
// XXX - this only handles modules that occur as variables, not modules
|
|
// that appear in aggregate types. Currently this works fine because
|
|
// we restrict how modules can be used during the lowering step. Eventually,
|
|
// we will need to decide what it means for us to 'copy' a module.
|
|
// For instance, we can copy just the state (parameters, attributes),
|
|
// but share the code. Or we can copy the code. If we choose to copy the
|
|
// code, what should we do about aggregate types that contain a module?
|
|
auto type_remap_fn = [&](TypePtr in) {
|
|
auto it = type_remap.find(in);
|
|
if (it == type_remap.end())
|
|
return in;
|
|
return it->second;
|
|
};
|
|
const Function& fn =
|
|
orig.class_compilation_unit()->get_function(orig_method_name);
|
|
auto graph = fn.graph()->copy();
|
|
graph->remapTypes(type_remap_fn);
|
|
auto schema = fn.getSchema().cloneWithRemappedTypes(type_remap_fn);
|
|
const auto this_method_name = getNameForMethod(orig_method_name.name());
|
|
auto copied =
|
|
class_compilation_unit()->create_function(this_method_name, graph);
|
|
copied->setSchema(std::move(schema));
|
|
}
|
|
|
|
void Module::clone_method(const Module& orig, const std::string& name) {
|
|
std::unordered_map<TypePtr, TypePtr> type_remap;
|
|
std::vector<std::pair<Module, Module>> to_scan = {{orig, *this}};
|
|
while (!to_scan.empty()) {
|
|
auto entry = to_scan.back();
|
|
to_scan.pop_back();
|
|
type_remap[entry.first.module_object()->type()] =
|
|
entry.second.module_object()->type();
|
|
for (Slot s : entry.first.get_module_slots()) {
|
|
to_scan.emplace_back(s.to_module(), entry.second.get_module(s.name()));
|
|
}
|
|
}
|
|
const auto orig_method_name = QualifiedName(orig.name(), name);
|
|
return clone_method(orig, orig_method_name, type_remap);
|
|
}
|
|
|
|
void Module::train(bool on) {
|
|
for (auto submod : get_modules()) {
|
|
submod.train(on);
|
|
}
|
|
if (auto slot = find_attribute("training")) {
|
|
slot->setValue(on);
|
|
} else {
|
|
register_attribute("training", BoolType::get(), on);
|
|
}
|
|
}
|
|
|
|
IValue Module::create_class(const c10::QualifiedName& name, Stack stack) const {
|
|
// Look up the class
|
|
const auto classType =
|
|
class_compilation_unit()->get_class(c10::QualifiedName(name));
|
|
if (!classType) {
|
|
AT_ERROR(
|
|
"Could not find class with name: '",
|
|
name.qualifiedName(),
|
|
"' in module.");
|
|
}
|
|
|
|
// Create a bare object with correct number of slots
|
|
const size_t numAttrs = classType->numAttributes();
|
|
auto obj = c10::ivalue::Object::create(
|
|
c10::StrongTypePtr(class_compilation_unit(), classType), numAttrs);
|
|
|
|
// Invoke the `__init__()` of the class with the arguments provided.
|
|
Stack stackWithSelf = {obj};
|
|
for (auto& arg : stack) {
|
|
stackWithSelf.push_back(std::move(arg));
|
|
}
|
|
// Note: following Python, `__init__()` modifies its first parameter in-place
|
|
// and returns nothing.
|
|
classType->getMethod("__init__")->operator()(std::move(stackWithSelf));
|
|
|
|
return obj;
|
|
}
|
|
|
|
slot_list Module::get_parameters() const {
|
|
return slot_list(*this, EntityType::PARAMETER);
|
|
}
|
|
|
|
slot_list Module::get_attributes() const {
|
|
return slot_list(*this, EntityType::ATTRIBUTE);
|
|
}
|
|
|
|
slot_list Module::get_module_slots() const {
|
|
return slot_list(*this, EntityType::MODULE);
|
|
}
|
|
|
|
slot_list Module::get_slots() const {
|
|
return slot_list(*this, c10::nullopt);
|
|
}
|
|
|
|
Module Slot::to_module() const {
|
|
return Module(value().toObject());
|
|
}
|
|
|
|
module_list Module::get_modules() const {
|
|
return module_list(*this, EntityType::MODULE);
|
|
}
|
|
|
|
void Module::apply(const std::function<void(Module&)>& fn) {
|
|
for (auto submod : get_modules()) {
|
|
submod.apply(fn);
|
|
}
|
|
fn(*this);
|
|
}
|
|
|
|
} // namespace script
|
|
} // namespace jit
|
|
} // namespace torch
|