pytorch/caffe2/python/modeling/parameter_info.py
Simon Layton 58874ad5bf Fp16 training initializers
Summary:
Re-open for re-importing :)
Closes https://github.com/caffe2/caffe2/pull/721

Differential Revision: D5164345

Pulled By: akyrola

fbshipit-source-id: e80b32556cd25610602df91a4225b93edc0ca40b
2017-06-01 08:34:46 -07:00

53 lines
1.7 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
import numpy as np
class ParameterType(object):
DENSE = 'dense'
SPARSE = 'sparse'
class ParameterInfo(object):
def __init__(
self, param_id, param, key=None, shape=None, length=None,
grad=None, blob_copy=None):
assert isinstance(param, core.BlobReference)
self.param_id = param_id
self.name = str(param)
self.blob = param
self.key = key
self.shape = shape
self.size = None if shape is None else np.prod(shape)
self.length = max(1, length if length is not None else 1)
self.grad = grad
self._cloned_init_net = None
# Optionally store equivalent copies of the blob
# in different precisions (i.e. half and float copies)
# stored as a dict of TensorProto.DataType -> BlobReference
self.blob_copy = blob_copy
def grad_type(self):
# self.grad could be None for model parallelism with parameter server
if self.grad is None:
return
return (
ParameterType.SPARSE if isinstance(self.grad, core.GradientSlice)
else ParameterType.DENSE)
def cloned_init_net(self):
if not self._cloned_init_net:
init_net, outputs = self.blob.Net().ClonePartial(
'param_%d_%s_init' % (self.param_id, self.name),
inputs=[],
outputs=[self.blob])
self._cloned_init_net = (init_net, outputs[0])
return self._cloned_init_net
def __str__(self):
return self.name