mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030 Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible Fixes https://github.com/pytorch/pytorch/issues/47442 * **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today. * There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate. * As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes. * `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls. `Storage._new_with_file` and `_set_from_file` require explicit element size arguments. * It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor. * It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling. * The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall. To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization. Original pull request: https://github.com/pytorch/pytorch/pull/59671 Reviewed By: soulitzer, ngimel Differential Revision: D29466819 Pulled By: ezyang fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
982 lines
45 KiB
C++
982 lines
45 KiB
C++
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/tensor_new.h>
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Size.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/utils/cuda_lazy_init.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_scalars.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/tensor_numpy.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/InitialTensorOptions.h>
|
|
#include <ATen/NamedTensorUtils.h>
|
|
#include <ATen/TracerMode.h>
|
|
#include <c10/core/Backend.h>
|
|
#include <c10/core/DispatchKeySet.h>
|
|
#include <c10/core/Layout.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/irange.h>
|
|
#include <c10/util/Optional.h>
|
|
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
using at::Backend;
|
|
using at::Device;
|
|
using at::IntArrayRef;
|
|
using at::kCPU;
|
|
using at::kCUDA;
|
|
using at::kLong;
|
|
using at::kInt;
|
|
using at::Scalar;
|
|
using at::ScalarType;
|
|
using at::Storage;
|
|
using at::Tensor;
|
|
using at::TensorOptions;
|
|
using at::Type;
|
|
using c10::optional;
|
|
|
|
namespace torch { namespace utils {
|
|
namespace {
|
|
const int MAX_DIMS = 128;
|
|
|
|
TensorOptions build_options(c10::TensorOptions options, at::ScalarType scalar_type, const c10::optional<Device>& device=c10::nullopt) {
|
|
options = options.dtype(scalar_type);
|
|
if (device.has_value()) {
|
|
return options.device(device);
|
|
}
|
|
return options;
|
|
}
|
|
|
|
void maybe_initialize_cuda(const Device device) {
|
|
if (device.is_cuda()) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
}
|
|
|
|
// NB: It appears there is some consistency invariant between options and device, where
|
|
// if device is non-empty, its type must be consistent with the device type in
|
|
// options.
|
|
// TODO: Refactor this so we just pass everything in via options
|
|
|
|
Tensor dispatch_ones(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(options.device());
|
|
pybind11::gil_scoped_release no_gil;
|
|
return torch::ones(sizes, build_options(options, scalar_type, device));
|
|
}
|
|
|
|
Tensor new_with_sizes(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(options.device());
|
|
pybind11::gil_scoped_release no_gil;
|
|
return torch::empty(sizes, build_options(options, scalar_type, device));
|
|
}
|
|
|
|
Tensor new_with_storage(c10::TensorOptions options, at::ScalarType scalar_type, Storage storage) {
|
|
auto tensor = at::empty({}, build_options(options, scalar_type));
|
|
tensor.set_(std::move(storage));
|
|
return tensor;
|
|
}
|
|
|
|
Tensor new_with_tensor(c10::TensorOptions options, at::ScalarType scalar_type, const Tensor& other) {
|
|
options = options.dtype(scalar_type);
|
|
TORCH_CHECK_TYPE(other.options().type_equal(options), "expected ",
|
|
options, " (got ", other.options(), ")");
|
|
return other.alias();
|
|
}
|
|
|
|
std::vector<int64_t> compute_sizes(PyObject* seq, ScalarType scalar_type) {
|
|
bool is_storage = isStorage(seq);
|
|
std::vector<int64_t> sizes;
|
|
THPObjectPtr handle;
|
|
while (PySequence_Check(seq)) {
|
|
auto length = PySequence_Length(seq);
|
|
if (length < 0) throw python_error();
|
|
if (is_storage) {
|
|
length /= elementSize(scalar_type);
|
|
}
|
|
sizes.push_back(length);
|
|
if (sizes.size() > MAX_DIMS) {
|
|
throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name);
|
|
}
|
|
if (length == 0) break;
|
|
handle = THPObjectPtr(PySequence_GetItem(seq, 0));
|
|
if (!handle) {
|
|
throw ValueError("could not determine the shape of object type '%s'", Py_TYPE(seq)->tp_name);
|
|
}
|
|
seq = handle.get();
|
|
}
|
|
|
|
return sizes;
|
|
}
|
|
|
|
ScalarType infer_scalar_type(PyObject *obj) {
|
|
#ifdef USE_NUMPY
|
|
if (is_numpy_available()) {
|
|
if (PyArray_Check(obj)) {
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)obj));
|
|
}
|
|
if (PyArray_CheckScalar(obj)) {
|
|
THPObjectPtr arr(PyArray_FromScalar(obj, nullptr));
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*) arr.get()));
|
|
}
|
|
}
|
|
#endif
|
|
if (PyFloat_Check(obj)) {
|
|
// this is always guaranteed to be a floating-point type, and makes it more
|
|
// convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype).
|
|
return torch::tensors::get_default_scalar_type();
|
|
}
|
|
if (THPUtils_checkLong(obj)) {
|
|
return ScalarType::Long;
|
|
}
|
|
if (PyBool_Check(obj)) {
|
|
return ScalarType::Bool;
|
|
}
|
|
if (PyComplex_Check(obj)) {
|
|
switch (torch::tensors::get_default_scalar_type()) {
|
|
case ScalarType::Float: return ScalarType::ComplexFloat;
|
|
case ScalarType::Double: return ScalarType::ComplexDouble;
|
|
default: TORCH_CHECK(false, "invalid default scalar type for complex");
|
|
}
|
|
}
|
|
if (THPVariable_Check(obj)) {
|
|
const auto& var = THPVariable_Unpack(obj);
|
|
return var.scalar_type();
|
|
}
|
|
if (THPUtils_checkString(obj)) {
|
|
throw TypeError("new(): invalid data type '%s'", Py_TYPE(obj)->tp_name);
|
|
}
|
|
if (PySequence_Check(obj)) {
|
|
c10::optional<ScalarType> scalarType;
|
|
auto length = PySequence_Length(obj);
|
|
if (length < 0) throw python_error();
|
|
// match NumPy semantics, except use default tensor type instead of double.
|
|
if (length == 0) return torch::tensors::get_default_scalar_type();
|
|
for (const auto i : c10::irange(length)) {
|
|
THPObjectPtr handle(PySequence_GetItem(obj, i));
|
|
if (!handle) throw python_error();
|
|
auto cur_item = handle.get();
|
|
if (cur_item == obj) throw TypeError("new(): self-referential lists are incompatible");
|
|
ScalarType item_scalarType = infer_scalar_type(cur_item);
|
|
scalarType = (scalarType) ?
|
|
at::promoteTypes(*scalarType, item_scalarType) : item_scalarType;
|
|
if (scalarType == ScalarType::ComplexDouble) {
|
|
// this won't change (unless we hit undefined, but that will fail later).
|
|
return *scalarType;
|
|
}
|
|
}
|
|
return *scalarType;
|
|
}
|
|
AT_ERROR("Could not infer dtype of ", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
void recursive_store(char* data, IntArrayRef sizes, IntArrayRef strides, int64_t dim,
|
|
ScalarType scalarType, int elementSize, PyObject* obj) {
|
|
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(data != nullptr);
|
|
|
|
int64_t ndim = sizes.size();
|
|
if (dim == ndim) {
|
|
torch::utils::store_scalar(data, scalarType, obj);
|
|
return;
|
|
}
|
|
|
|
auto n = sizes[dim];
|
|
auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence"));
|
|
if (!seq) throw python_error();
|
|
// NOLINTNEXTLINE(bugprone-branch-clone)
|
|
auto seq_size = PySequence_Fast_GET_SIZE(seq.get());
|
|
if (seq_size != n) {
|
|
throw ValueError("expected sequence of length %lld at dim %lld (got %lld)",
|
|
(long long)n, (long long)dim, (long long)seq_size);
|
|
}
|
|
|
|
PyObject** items = PySequence_Fast_ITEMS(seq.get());
|
|
for(const auto i : c10::irange(n)) {
|
|
#ifdef USE_NUMPY
|
|
if (PyArray_Check(items[i])) {
|
|
TORCH_WARN_ONCE(
|
|
"Creating a tensor from a list of numpy.ndarrays is extremely slow. "
|
|
"Please consider converting the list to a single numpy.ndarray with "
|
|
"numpy.array() before converting to a tensor.");
|
|
}
|
|
#endif
|
|
recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]);
|
|
data += strides[dim] * elementSize;
|
|
}
|
|
}
|
|
|
|
Tensor internal_new_from_data(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device_opt,
|
|
PyObject* data,
|
|
bool copy_variables,
|
|
bool copy_numpy,
|
|
bool type_inference,
|
|
bool pin_memory = false) {
|
|
if (THPUtils_checkString(data)) {
|
|
throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name);
|
|
}
|
|
|
|
if (THPVariable_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from a variable");
|
|
// TODO: use MaybeOwned
|
|
auto var = THPVariable_Unpack(data);
|
|
if (copy_variables) {
|
|
var = var.detach();
|
|
}
|
|
// infer the scalar type and device type; it's not expected to infer the layout since these constructors
|
|
// are defined per-layout-type (e.g. tensor vs sparse_coo_tensor).
|
|
const auto& inferred_scalar_type = type_inference ? var.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : var.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return var.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables);
|
|
}
|
|
|
|
#ifdef USE_NUMPY
|
|
if (PyObject_HasAttrString(data, "__cuda_array_interface__")) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from __cuda_array_interface__");
|
|
auto tensor = tensor_from_cuda_array_interface(data);
|
|
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : options.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
|
|
}
|
|
|
|
if (is_numpy_available() && PyArray_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from numpy");
|
|
auto tensor = tensor_from_numpy(data, /*warn_if_not_writeable=*/!copy_numpy);
|
|
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : options.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
|
|
}
|
|
#endif
|
|
|
|
auto sizes = compute_sizes(data, scalar_type);
|
|
ScalarType inferred_scalar_type = type_inference ? infer_scalar_type(data) : scalar_type;
|
|
// This exists to prevent us from tracing the call to empty(). The actual
|
|
// autograd code doesn't really matter, because requires_grad is always false
|
|
// here.
|
|
Tensor tensor;
|
|
{
|
|
at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove
|
|
at::tracer::impl::NoTracerDispatchMode tracer_guard;
|
|
c10::impl::ExcludeDispatchKeyGuard pythonmode_guard(c10::DispatchKey::Python);
|
|
// functorch uses FuncTorchDynamicLayerBackMode as a mode key to wrap all
|
|
// tensors returned from operators in special TensorWrapper tensor extension
|
|
// The problem with this is that TensorWrapper does not have storage so
|
|
// accessing the data_ptr (for recursive_store) internal asserts.
|
|
// As a quick hack, the guard here prevents functorch from wrapping the empty
|
|
// tensor in a TensorWrapper and instead when `tensor.to` is called later,
|
|
// the tensor gets wrapped. A more long-term solution is to think about
|
|
// what the extensibility mechanism for this function (internal_new_from_data)
|
|
// looks like for mode-based dispatch keys and C++ tensor extensions.
|
|
c10::impl::ExcludeDispatchKeyGuard functorch_guard(c10::DispatchKey::FuncTorchDynamicLayerBackMode);
|
|
|
|
if (isStorage(data)) {
|
|
ScalarType storage_scalar_type;
|
|
bool is_typed_storage = false;
|
|
Storage storage = createStorageGetType(data, storage_scalar_type, is_typed_storage);
|
|
TORCH_CHECK(!is_typed_storage || storage_scalar_type == scalar_type,
|
|
"Expected a Storage of type ", scalar_type,
|
|
" or an UntypedStorage, but got ", storage_scalar_type);
|
|
tensor = at::empty(sizes, at::initialTensorOptions().dtype(is_typed_storage ? storage_scalar_type : inferred_scalar_type).pinned_memory(pin_memory).device(storage.device()));
|
|
tensor.set_(storage);
|
|
|
|
} else {
|
|
tensor = at::empty(sizes, at::initialTensorOptions().dtype(inferred_scalar_type).pinned_memory(pin_memory));
|
|
if (c10::multiply_integers(tensor.sizes()) !=0 ) {
|
|
recursive_store(
|
|
(char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0,
|
|
inferred_scalar_type, tensor.dtype().itemsize(), data);
|
|
}
|
|
}
|
|
}
|
|
auto device = device_opt.has_value() ? *device_opt : options.device();
|
|
pybind11::gil_scoped_release no_gil;
|
|
maybe_initialize_cuda(device);
|
|
// However, it is VERY important that we trace the to() call here (even
|
|
// though the reason this is important is a hack). Without *some* factory
|
|
// function call that is traced at construction time, we will consider
|
|
// a tensor constant as originating from "outside" the trace, and if you
|
|
// try to return it directly we will fail with the error saying no
|
|
// "no observable data dependence". In an ideal world, we wouldn't trace
|
|
// a to() call but I need to think harder about what exactly we should trace
|
|
// in this case.
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false);
|
|
}
|
|
|
|
Tensor new_from_data_copy(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
return internal_new_from_data(options, scalar_type, device, data,
|
|
/*copy_variables=*/true, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
}
|
|
|
|
Tensor legacy_new_from_sequence(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
if (!PySequence_Check(data)) {
|
|
throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name);
|
|
}
|
|
return internal_new_from_data(options, scalar_type, device, data,
|
|
/*copy_variables=*/false, /*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
}
|
|
|
|
// "base" here refers to the Tensor type on which the function was invoked, e.g.:
|
|
// in x.new(y), 'x' is the base.
|
|
// TODO: Rewrite this using dispatchKeyToTensorOptions
|
|
void check_base_legacy_new(c10::DispatchKey dispatch_key, at::Layout expected_layout) {
|
|
if (expected_layout == c10::kStrided) {
|
|
constexpr c10::DispatchKeySet expected_key_set({
|
|
c10::DispatchKey::CPU,
|
|
c10::DispatchKey::CUDA,
|
|
c10::DispatchKey::HIP,
|
|
c10::DispatchKey::XLA,
|
|
c10::DispatchKey::Lazy,
|
|
c10::DispatchKey::XPU,
|
|
c10::DispatchKey::HPU,
|
|
});
|
|
TORCH_CHECK(expected_key_set.has(dispatch_key),
|
|
"new(): expected key in ",
|
|
expected_key_set,
|
|
" but got: ",
|
|
dispatch_key);
|
|
} else if(expected_layout == c10::kSparse) {
|
|
// NOTE: no sparse XLA or Lazy
|
|
constexpr c10::DispatchKeySet expected_key_set({
|
|
c10::DispatchKey::SparseCPU,
|
|
c10::DispatchKey::SparseCUDA,
|
|
c10::DispatchKey::SparseHIP,
|
|
c10::DispatchKey::SparseXPU,
|
|
});
|
|
TORCH_CHECK(expected_key_set.has(dispatch_key),
|
|
"new(): expected key in ",
|
|
expected_key_set,
|
|
" but got: ",
|
|
dispatch_key);
|
|
} else {
|
|
TORCH_INTERNAL_ASSERT(false, "unexpected layout");
|
|
}
|
|
}
|
|
|
|
// TODO: Make this accept options instead of dispatch key
|
|
void check_legacy_ctor_device(c10::DispatchKey dispatch_key, c10::optional<Device> device) {
|
|
if (device.has_value()) {
|
|
TORCH_CHECK(dispatchKeyToDeviceType(dispatch_key) == device.value().type(),
|
|
"legacy constructor expects device type: ", dispatchKeyToDeviceType(dispatch_key),
|
|
" but device type: ", device.value().type(), " was passed");
|
|
}
|
|
}
|
|
|
|
Tensor legacy_sparse_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor indices, Tensor values, *, Device? device=None)",
|
|
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
});
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return at::empty({0}, build_options(options, scalar_type, deviceOptional));
|
|
} else if (r.idx == 1) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 2) {
|
|
auto deviceOptional = r.deviceOptional(2);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
|
|
} else if (r.idx == 3) {
|
|
auto deviceOptional = r.deviceOptional(3);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
throw TypeError("torch.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
|
|
"or construct a strided tensor and convert it to sparse via to_sparse.");
|
|
}
|
|
return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor legacy_sparse_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor indices, Tensor values, *, Device? device=None)",
|
|
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
});
|
|
check_base_legacy_new(dispatch_key, c10::kSparse);
|
|
ParsedArgs<5> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, build_options(options, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 2) {
|
|
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
|
|
// have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(2);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
|
|
} else if (r.idx == 3) {
|
|
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
|
|
// have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(3);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
throw TypeError("SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \
|
|
"or construct a strided tensor and convert it to sparse via to_sparse.");
|
|
}
|
|
return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
|
|
c10::TensorOptions typeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::DispatchKey dispatch_key) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
if (!r.isNone(device_idx)) {
|
|
// TODO: This line doesn't seem to be exercised at all in tests
|
|
options = options.device(r.device(device_idx).type());
|
|
}
|
|
return options;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
Tensor legacy_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(Storage storage)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor other)",
|
|
"new(Tensor other, *, Device? device=None)|hidden", // prevent Tensor matching with IntArrayRef, PyObject*
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
"new(PyObject* data, *, Device? device=None)",
|
|
});
|
|
|
|
if (isSparse(dispatchKeyToBackend(dispatch_key))) {
|
|
return legacy_sparse_tensor_ctor(dispatch_key, scalar_type, args, kwargs);
|
|
}
|
|
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, build_options(options, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
at::ScalarType storage_scalar_type;
|
|
bool is_typed_storage = false;
|
|
at::Storage storage = r.storage(0, storage_scalar_type, is_typed_storage);
|
|
if (storage_scalar_type != at::ScalarType::Undefined && is_typed_storage) {
|
|
TORCH_CHECK(
|
|
storage_scalar_type == scalar_type,
|
|
"Expected a Storage of type ", scalar_type,
|
|
" or an UntypedStorage, but got type ", storage_scalar_type,
|
|
" for argument 1 'storage'");
|
|
}
|
|
return new_with_storage(options, scalar_type, storage);
|
|
} else if (r.idx == 2) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 3) {
|
|
return new_with_tensor(options, scalar_type, r.tensor(0));
|
|
} else if (r.idx == 4) {
|
|
TORCH_CHECK(false, "Legacy tensor constructor of the form torch.Tensor(tensor, device=device) " \
|
|
"is not supported. Use torch.tensor(...) or torch.as_tensor(...) instead.");
|
|
} else if (r.idx == 5) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
} else if (r.idx == 6) {
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor legacy_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(Storage storage)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor other)", // this doesn't have a dtype/device because it creates an alias.
|
|
"new(Tensor other, *, Device? device=None)|hidden", // prevent Tensor matching with IntArrayRef, PyObject*
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
"new(PyObject* data, *, Device? device=None)",
|
|
});
|
|
|
|
if (isSparse(dispatchKeyToBackend(dispatch_key))) {
|
|
return legacy_sparse_tensor_new(dispatch_key, scalar_type, args, kwargs);
|
|
}
|
|
|
|
check_base_legacy_new(dispatch_key, c10::kStrided);
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, build_options(options, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
at::ScalarType storage_scalar_type;
|
|
bool is_typed_storage = false;
|
|
at::Storage storage = r.storage(0, storage_scalar_type, is_typed_storage);
|
|
if (storage_scalar_type != at::ScalarType::Undefined && is_typed_storage) {
|
|
TORCH_CHECK(
|
|
storage_scalar_type == scalar_type,
|
|
"Expected a Storage of type ", scalar_type,
|
|
" or an UntypedStorage, but got type ", storage_scalar_type,
|
|
" for argument 1 'storage'");
|
|
}
|
|
return new_with_storage(options, scalar_type, storage);
|
|
} else if (r.idx == 2) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return at::unsafeTensorFromTH(cdata, true);
|
|
} else if (r.idx == 3) {
|
|
return new_with_tensor(options, scalar_type, r.tensor(0));
|
|
} else if (r.idx == 4) {
|
|
TORCH_CHECK(false, "Legacy tensor new of the form tensor.new(tensor, device=device) " \
|
|
"is not supported. Use torch.as_tensor(...) instead.");
|
|
} else if (r.idx == 5) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
} else if (r.idx == 6) {
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(dispatch_key, deviceOptional);
|
|
return legacy_new_from_sequence(options, scalar_type, r.deviceOptional(1), r.pyobject(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor indexing_tensor_from_data(
|
|
c10::TensorOptions options,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
// Specific to tensor indexing, converts an indexing list to an
|
|
// indexing tensor (type Byte or Long)
|
|
ScalarType inferred_scalar_type = infer_scalar_type(data);
|
|
if (inferred_scalar_type == ScalarType::Byte || inferred_scalar_type == ScalarType::Bool) {
|
|
return internal_new_from_data(options, inferred_scalar_type, device, data,
|
|
/*copy_variables=*/false, /*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
} else {
|
|
return internal_new_from_data(options, scalar_type, device, data,
|
|
/*copy_variables=*/false, /*copy_numpy=*/false,
|
|
/*type_inference=*/false);
|
|
}
|
|
}
|
|
|
|
Tensor sparse_csr_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
static PythonArgParser parser({
|
|
"sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)",
|
|
"sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)",
|
|
});
|
|
const int NUM_ARGS = 9, CROW_INDICES_ARG = 0, COL_INDICES_ARG = 1, VALUES_ARG = 2;
|
|
ParsedArgs<NUM_ARGS> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
auto safe_get_attr_string = [](PyObject *o, const char *attr_name) -> PyObject* {
|
|
// Clear error indicator if attribute does not exists.
|
|
// Otherwise subsequent Python C API calls might return bogus values.
|
|
// See https://github.com/pytorch/pytorch/issues/58520 for more details
|
|
auto rc = PyObject_GetAttrString(o, attr_name);
|
|
if (!rc) {
|
|
if (!PyErr_ExceptionMatches(PyExc_AttributeError)) {
|
|
throw python_error();
|
|
}
|
|
// Warning: a wrong attribute error may be suppressed here
|
|
PyErr_Clear();
|
|
}
|
|
return rc;
|
|
};
|
|
THPObjectPtr crow_indices_dtype_attr(safe_get_attr_string(r.pyobject(CROW_INDICES_ARG), "dtype"));
|
|
THPObjectPtr col_indices_dtype_attr(safe_get_attr_string(r.pyobject(COL_INDICES_ARG), "dtype"));
|
|
at::ScalarType crow_indices_scalar_type = crow_indices_dtype_attr ? reinterpret_cast<THPDtype*>(
|
|
crow_indices_dtype_attr.get())->scalar_type : kInt;
|
|
at::ScalarType col_indices_scalar_type = col_indices_dtype_attr ? reinterpret_cast<THPDtype*>(
|
|
col_indices_dtype_attr.get())->scalar_type : kInt;
|
|
|
|
if (r.idx == 0) {
|
|
const int SIZE_ARRAY_ARG = 3, TYPE_INFERENCE_ARG = 4, DEVICE_TYPE_ARG = 6, REQ_GRAD_ARG = 8;
|
|
bool type_inference = r.isNone(TYPE_INFERENCE_ARG);
|
|
const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG));
|
|
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
|
|
r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
Tensor crow_indices = internal_new_from_data(values.options(),
|
|
crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(CROW_INDICES_ARG),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
Tensor col_indices = internal_new_from_data(values.options(),
|
|
col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(COL_INDICES_ARG),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
|
|
return at::sparse_csr_tensor(crow_indices, col_indices, values, r.intlist(SIZE_ARRAY_ARG),
|
|
values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG));
|
|
} else if (r.idx == 1) {
|
|
const int TYPE_INFERENCE_ARG = 3, DEVICE_TYPE_ARG = 5, REQ_GRAD_ARG = 7;
|
|
bool type_inference = r.isNone(TYPE_INFERENCE_ARG);
|
|
const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG));
|
|
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
|
|
r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
Tensor crow_indices = internal_new_from_data(values.options(),
|
|
crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
|
|
r.pyobject(CROW_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
Tensor col_indices = internal_new_from_data(values.options(), col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG),
|
|
r.pyobject(COL_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
return at::sparse_csr_tensor(crow_indices, col_indices, values,
|
|
values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG));
|
|
}
|
|
throw std::runtime_error("sparse_csr_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor _sparse_csr_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
enum {
|
|
ARG_CROW_INDICES = 0,
|
|
ARG_COL_INDICES,
|
|
ARG_VALUES,
|
|
ARG_SIZE,
|
|
ARG_TYPE,
|
|
ARG_DEVICE,
|
|
ARG_REQUIRES_GRAD,
|
|
ARGS_COUNT
|
|
};
|
|
static PythonArgParser parser({
|
|
"_sparse_csr_tensor_unsafe(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<ARGS_COUNT> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
bool type_inference = r.isNone(ARG_TYPE);
|
|
const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE));
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
|
|
Tensor crow_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_CROW_INDICES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
|
|
Tensor col_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_COL_INDICES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/true);
|
|
|
|
return at::_sparse_csr_tensor_unsafe(crow_indices, col_indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
|
|
}
|
|
|
|
// Note [Ensuring sparse values and indices match devices]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// In all places where we construct indices, we read out options from values
|
|
// (rather than use inferred_options). Why? This handles the case when
|
|
// values is a CUDA tensor, but indices is a non-Tensor value (and the device
|
|
// argument is not set). Example:
|
|
//
|
|
// torch.sparse_coo_tensor(([0, 1],), self.empty(2, 0).cuda(), (4, 0))
|
|
//
|
|
// Sparse tensors require both indices and values to live on the same device.
|
|
// If values lives on CUDA, we can infer where the indices should live, and
|
|
// should accept even ordinary index sequences (and just make sure we write them
|
|
// into the correct device). values is the ONLY way we know that the index
|
|
// tensor should go to CUDA, so we have to get the information in somehow.
|
|
//
|
|
// This code is kind of jank. For one, the dtype in options is silently ignored
|
|
// by internal_new_from_data. Also, in classic janky code style, it used to
|
|
// not work quite right: if values lives on "cuda:1", before all we said was
|
|
// "this needs to be CUDA" and indices would be allocated on the wrong tensor.
|
|
// Options is more right and gets this correct.
|
|
|
|
Tensor sparse_coo_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
static PythonArgParser parser({
|
|
"sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
"sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
"sparse_coo_tensor(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<6> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
bool type_inference = r.isNone(2);
|
|
const auto inferred_options = typeIdWithDefault(r, 3, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(2, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(3));
|
|
// if no dtype provided, infer type based on value type.
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(3), r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(3), r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::sparse_coo_tensor(indices, values, values.options().layout(at::kSparse)).set_requires_grad(r.toBool(4));
|
|
} else if (r.idx == 1) {
|
|
bool type_inference = r.isNone(3);
|
|
const auto inferred_options = typeIdWithDefault(r, 4, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(3, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(4));
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(4), r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(4), r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::sparse_coo_tensor(indices, values, r.intlist(2), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(5));
|
|
} else if (r.idx == 2) {
|
|
const auto inferred_options = typeIdWithDefault(r, 2, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(1, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(2));
|
|
return at::sparse_coo_tensor(r.intlist(0), inferred_options.dtype(inferred_scalar_type).layout(at::kSparse)).set_requires_grad(r.toBool(3));
|
|
}
|
|
throw std::runtime_error("sparse_coo_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor _sparse_coo_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)));
|
|
TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)));
|
|
enum {
|
|
ARG_INDICES = 0,
|
|
ARG_VALUES,
|
|
ARG_SIZE,
|
|
ARG_TYPE,
|
|
ARG_DEVICE,
|
|
ARG_REQUIRES_GRAD,
|
|
ARGS_COUNT
|
|
};
|
|
static PythonArgParser parser({
|
|
"_sparse_coo_tensor_unsafe(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<ARGS_COUNT> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
bool type_inference = r.isNone(ARG_TYPE);
|
|
const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE));
|
|
Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_INDICES),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true,
|
|
/*type_inference=*/false);
|
|
return at::_sparse_coo_tensor_unsafe(indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD));
|
|
}
|
|
|
|
void _validate_sparse_coo_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"_validate_sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size)",
|
|
});
|
|
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Tensor values = internal_new_from_data(
|
|
options, scalar_type, c10::nullopt, r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor indices = internal_new_from_data(
|
|
values.options(), kLong, c10::nullopt, r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/false);
|
|
at::native::_validate_sparse_coo_tensor_args(indices, values, r.intlist(2));
|
|
}
|
|
|
|
|
|
void _validate_sparse_csr_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
auto options = dispatchKeyToTensorOptions(dispatch_key);
|
|
static PythonArgParser parser({
|
|
"_validate_sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size)",
|
|
});
|
|
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
Tensor values = internal_new_from_data(
|
|
options, scalar_type, c10::nullopt, r.pyobject(2),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
|
|
// See Note [Ensuring sparse values and indices match devices]
|
|
Tensor crow_indices = internal_new_from_data(
|
|
values.options(), kInt, c10::nullopt, r.pyobject(0),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
|
|
Tensor col_indices = internal_new_from_data(
|
|
values.options(), kInt, c10::nullopt, r.pyobject(1),
|
|
/*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true);
|
|
|
|
at::native::_validate_sparse_csr_tensor_args(crow_indices, col_indices, values, r.intlist(3));
|
|
}
|
|
|
|
Tensor tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False, DimnameList? names=None)",
|
|
});
|
|
|
|
constexpr int ctor_num_args = 6;
|
|
ParsedArgs<ctor_num_args> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
auto ret = PyErr_WarnEx(PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
|
|
"or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).", 1);
|
|
if (ret != 0) throw python_error();
|
|
}
|
|
|
|
bool type_inference = r.isNone(1);
|
|
bool pin_memory = r.toBool(3);
|
|
bool args_requires_grad = r.toBool(4);
|
|
auto new_tensor = internal_new_from_data(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
data,
|
|
/*copy_variables=*/true,
|
|
/*copy_numpy=*/true,
|
|
/*type_inference=*/type_inference,
|
|
pin_memory);
|
|
auto names = r.toDimnameListOptional(5);
|
|
if (names) {
|
|
at::namedinference::propagate_names(new_tensor, *names, /*validate_names=*/true);
|
|
}
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor as_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
// TODO: add requires_grad once we decide on semantics for sharing data.
|
|
static PythonArgParser parser({
|
|
"as_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None)",
|
|
});
|
|
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
bool type_inference = r.isNone(1);
|
|
return internal_new_from_data(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
r.pyobject(0),
|
|
/*copy_variables=*/false,
|
|
/*copy_numpy=*/false,
|
|
/*type_inference=*/type_inference);
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor new_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
auto ret = PyErr_WarnEx(PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
|
|
"or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor).", 1);
|
|
if (ret != 0) throw python_error();
|
|
}
|
|
|
|
bool args_requires_grad = r.toBool(3);
|
|
auto new_tensor = new_from_data_copy(
|
|
typeIdWithDefault(r, 2, dispatch_key),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
data);
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("new_tensor(): invalid arguments");
|
|
}
|
|
|
|
}} // namespace torch::utils
|