mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/53306 * [ONNX] Fix for sequence of mutations in blocks (#51577) Fixes consecutive mutations in a tensor inside blocks. Also, support append and pop in blocks. * Support inplace operations + indexing * Clean up old pass for remove mutations * Add loop test * Fixes for set attr in loops * Removing the new jit API flag * [ONNX] Redesign onnx pass to enable shape type dependent pattern conversion - cont (#51795) With the introduction of ONNX shape inference, shape and type are inferred on the fly as operators get converted from ATen to ONNX when running symbolic function. This resolves the shape/type requirement for the symbolic functions. The pre-onnx passes however, can not be supported by shape inference, since at that stage the operators in the graph are still ATen operators. This PR is to update the design of ONNX pass, to enable a mechanism of capturing subgraphs of ATen operators of certain patterns, and convert them later, when shape/type information of upstream operators are available. The new design will require pre-onnx passes that need shape/type to be written in two parts, encapsulation and conversion. The encapsulation part will find the nodes of patterns, like how pre-onnx passes were written previously. But instead of converting the nodes, it will encapsulate them into a sub-block of a new placeholder node. This part is called before onnx pass, so it runs before calling symbolic functions. The conversion part will be called inside the onnx pass. In onnx pass, run_symbolic_func will be called for each node in topological order. When it reaches the placeholder node, the conversion part will be invoked. It will convert the nodes inside the sub-block based on pattern. By that time, it will have shape/type of upstream operators available. After the conversion is complete, the placeholder node will be removed, and nodes inside its sub-block converted. Run_symbolic_func will be called for these nodes, and they will be converted from ATen operator to ONNX operator. This PR includes several other fixes, listed below. * ~~replace helper.cpp with onnx_utils.cpp for holding utility functions.~~ * fix EraseNumberTypes on Bool type, the code was outdated that back then Bool type doesn't exist. * ~~enable onnx shape inference in export with parameter/initializer data.~~ * other code clean ups. * fix insertion of identity nodes for loop opset 13 sequence output. ~~PR depends on #51603~~ * Fix after merge * clang * Fix clang * Fix clang * Fix warning message. * Fixes for non-model param attributes * Fix for caffe2 * Additional test * clang * Skip test for lower opsets * fix clang-tidy * Update init.cpp * Update remove_inplace_ops_for_onnx.cpp * Update remove_inplace_ops_for_onnx.cpp * Update remove_inplace_ops_for_onnx.cpp * Fix for clang formatting Test Plan: Imported from OSS Reviewed By: pbelevich, malfet Differential Revision: D26922416 Pulled By: SplitInfinity fbshipit-source-id: e7108620b39b6404c594910786c4d275fee59d84 Co-authored-by: Bowen Bao <bowbao@microsoft.com>
2529 lines
102 KiB
Python
2529 lines
102 KiB
Python
from typing import Tuple
|
|
import io
|
|
import itertools
|
|
import sys
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from debug_embed_params import run_embed_params
|
|
from torch import nn
|
|
from torch.autograd import Variable, function
|
|
from torch.nn.utils import rnn as rnn_utils
|
|
from torch.onnx import ExportTypes
|
|
import torch.onnx
|
|
import torch.onnx.operators
|
|
import torch.utils.model_zoo as model_zoo
|
|
|
|
# Import various models for testing
|
|
from torchvision.models.alexnet import alexnet
|
|
from torchvision.models.densenet import densenet121
|
|
from torchvision.models.inception import inception_v3
|
|
from torchvision.models.resnet import resnet50
|
|
from torchvision.models.vgg import vgg16, vgg16_bn, vgg19, vgg19_bn
|
|
|
|
from model_defs.squeezenet import SqueezeNet
|
|
from model_defs.super_resolution import SuperResolutionNet
|
|
from model_defs.srresnet import SRResNet
|
|
import model_defs.dcgan as dcgan
|
|
import model_defs.word_language_model as word_language_model
|
|
from model_defs.mnist import MNIST
|
|
from model_defs.lstm_flattening_result import LstmFlatteningResult
|
|
from model_defs.rnn_model_with_packed_sequence import RnnModelWithPackedSequence
|
|
from caffe2.python.operator_test.torch_integration_test import (generate_rois_rotated,
|
|
create_bbox_transform_inputs)
|
|
|
|
import onnx
|
|
import caffe2.python.onnx.backend as c2
|
|
|
|
from test_pytorch_common import skipIfTravis, skipIfNoLapack, skipIfNoCuda
|
|
from test_pytorch_common import BATCH_SIZE, RNN_BATCH_SIZE, RNN_SEQUENCE_LENGTH, RNN_INPUT_SIZE, RNN_HIDDEN_SIZE
|
|
from test_pytorch_common import skipIfUnsupportedOpsetVersion, skipIfUnsupportedMinOpsetVersion
|
|
import verify
|
|
|
|
skip = unittest.skip
|
|
|
|
|
|
def skipIfEmbed(func):
|
|
def wrapper(self):
|
|
if self.embed_params:
|
|
raise unittest.SkipTest("Skip embed_params verify test")
|
|
return func(self)
|
|
return wrapper
|
|
|
|
def skipIfNoEmbed(func):
|
|
def wrapper(self):
|
|
if not self.embed_params:
|
|
raise unittest.SkipTest("Skip debug embed_params test")
|
|
return func(self)
|
|
return wrapper
|
|
|
|
# def import_model(proto, input, workspace=None, use_gpu=True):
|
|
# model_def = onnx.ModelProto.FromString(proto)
|
|
# onnx.checker.check_model(model_def)
|
|
#
|
|
# if workspace is None:
|
|
# workspace = {}
|
|
# if isinstance(input, tuple):
|
|
# for i in range(len(input)):
|
|
# workspace[model_def.graph.input[i]] = input[i]
|
|
# else:
|
|
# workspace[model_def.graph.input[0]] = input
|
|
#
|
|
# caffe2_out_workspace = c2.run_model(
|
|
# init_graph=None,
|
|
# predict_graph=graph_def,
|
|
# inputs=workspace,
|
|
# use_gpu=use_gpu)
|
|
# caffe2_out = caffe2_out_workspace[0]
|
|
# return caffe2_out
|
|
|
|
|
|
def do_export(model, inputs, *args, **kwargs):
|
|
f = io.BytesIO()
|
|
out = torch.onnx._export(model, inputs, f, *args, **kwargs)
|
|
if isinstance(model, torch.jit.ScriptModule):
|
|
# Special case for common case of passing a single Tensor
|
|
if isinstance(inputs, torch.Tensor):
|
|
inputs = (inputs,)
|
|
out = model(*inputs)
|
|
return f.getvalue(), out
|
|
|
|
|
|
torch.set_default_tensor_type('torch.FloatTensor')
|
|
try:
|
|
import torch
|
|
except ImportError:
|
|
print('Cannot import torch, hence caffe2-torch test will not run.')
|
|
sys.exit(0)
|
|
|
|
|
|
model_urls = {
|
|
'alexnet': 'https://s3.amazonaws.com/download.caffe2.ai/test_data/alexnet-owt-4df8aa71.pth',
|
|
'dcgan_b': 'https://s3.amazonaws.com/pytorch/test_data/export/netG_bedroom_epoch_1-0649e76b.pth',
|
|
'dcgan_f': 'https://s3.amazonaws.com/pytorch/test_data/export/netG_faces_epoch_49-d86035a6.pth',
|
|
'densenet121': 'https://s3.amazonaws.com/download.caffe2.ai/test_data/densenet121-d66d3027.pth',
|
|
'inception_v3_google': 'https://s3.amazonaws.com/download.caffe2.ai/test_data/inception_v3_google-1a9a5a14.pth',
|
|
'resnet50': 'https://s3.amazonaws.com/download.caffe2.ai/test_data/resnet50-19c8e357.pth',
|
|
'srresNet': 'https://s3.amazonaws.com/pytorch/demos/srresnet-e10b2039.pth',
|
|
'super_resolution': 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth',
|
|
'squeezenet1_0': 'https://s3.amazonaws.com/download.caffe2.ai/test_data/squeezenet1_0-a815701f.pth',
|
|
'squeezenet1_1': 'https://s3.amazonaws.com/download.caffe2.ai/test_data/squeezenet1_1-f364aa15.pth',
|
|
'vgg16': 'https://s3.amazonaws.com/download.caffe2.ai/test_data/vgg16-397923af.pth',
|
|
'vgg19': 'https://s3.amazonaws.com/download.caffe2.ai/test_data/vgg19-dcbb9e9d.pth',
|
|
}
|
|
|
|
|
|
class TestCaffe2Backend_opset9(unittest.TestCase):
|
|
from torch.onnx.symbolic_helper import _export_onnx_opset_version
|
|
opset_version = _export_onnx_opset_version
|
|
embed_params = False
|
|
|
|
def setUp(self):
|
|
torch.manual_seed(0)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed_all(0)
|
|
np.random.seed(seed=0)
|
|
|
|
def convert_cuda(self, model, input):
|
|
cuda_model = model.cuda()
|
|
# input might be nested - we want to move everything to GPU
|
|
cuda_input = function._nested_map(
|
|
lambda o: isinstance(o, Variable) or isinstance(o, torch.Tensor),
|
|
lambda o: o.cuda())(input)
|
|
return cuda_model, cuda_input
|
|
|
|
def run_debug_test(self, model, train, batch_size, state_dict=None,
|
|
input=None, use_gpu=True, example_outputs=None,
|
|
operator_export_type=torch.onnx.OperatorExportTypes.ONNX):
|
|
"""
|
|
# TODO: remove this from the final release version
|
|
This test is for our debugging only for the case where
|
|
embed_params=False
|
|
"""
|
|
if not isinstance(model, torch.jit.ScriptModule):
|
|
model.train(train)
|
|
if state_dict is not None:
|
|
model.load_state_dict(state_dict)
|
|
|
|
# Either user specified input or random (deterministic) input
|
|
if input is None:
|
|
input = torch.randn(batch_size, 3, 224, 224, requires_grad=True)
|
|
if use_gpu:
|
|
model, input = self.convert_cuda(model, input)
|
|
|
|
onnxir, torch_out = do_export(model, input, export_params=self.embed_params, verbose=False,
|
|
example_outputs=example_outputs,
|
|
do_constant_folding=False,
|
|
opset_version=self.opset_version,
|
|
keep_initializers_as_inputs=True,
|
|
add_node_names=False,
|
|
operator_export_type=operator_export_type)
|
|
if isinstance(torch_out, torch.autograd.Variable):
|
|
torch_out = (torch_out,)
|
|
|
|
caffe2_out = run_embed_params(onnxir, model, input, state_dict, use_gpu)
|
|
for _, (x, y) in enumerate(zip(torch_out, caffe2_out)):
|
|
np.testing.assert_almost_equal(x.data.cpu().numpy(), y, decimal=3)
|
|
|
|
def run_actual_test(self, model, train, batch_size, state_dict=None,
|
|
input=None, use_gpu=True, rtol=0.001, atol=1e-7,
|
|
example_outputs=None, do_constant_folding=True,
|
|
operator_export_type=torch.onnx.OperatorExportTypes.ONNX):
|
|
"""
|
|
This is what the user facing version will look like
|
|
"""
|
|
# set the training/test mode for the model
|
|
if not isinstance(model, torch.jit.ScriptModule):
|
|
model.train(train)
|
|
# use the pre-trained model params if available
|
|
if state_dict is not None:
|
|
model.load_state_dict(state_dict)
|
|
|
|
# Either user specified input or random (deterministic) input
|
|
if input is None:
|
|
input = torch.randn(batch_size, 3, 224, 224, requires_grad=True)
|
|
# GPU-ize the model, if requested
|
|
if use_gpu:
|
|
model, input = self.convert_cuda(model, input)
|
|
|
|
# Verify the model runs the same in Caffe2
|
|
verify.verify(model, input, c2, rtol=rtol, atol=atol,
|
|
example_outputs=example_outputs,
|
|
do_constant_folding=do_constant_folding,
|
|
opset_version=self.opset_version,
|
|
keep_initializers_as_inputs=True,
|
|
operator_export_type=operator_export_type)
|
|
|
|
def run_model_test(self, model, train, batch_size, state_dict=None,
|
|
input=None, use_gpu=True, rtol=0.001, atol=1e-7,
|
|
example_outputs=None, do_constant_folding=True,
|
|
operator_export_type=torch.onnx.OperatorExportTypes.ONNX):
|
|
use_gpu_ = torch.cuda.is_available() and use_gpu
|
|
# NOTE: do_constant_folding is turned on only when model has
|
|
# parameters embedded (which are needed for constant folding),
|
|
# i.e. for self.embed_params=True case. self.embed_params=True
|
|
# for the TestCaffe2BackendEmbed class defined at the bottom.
|
|
if self.embed_params:
|
|
self.run_actual_test(model, train, batch_size, state_dict, input,
|
|
use_gpu=use_gpu_, rtol=rtol, atol=atol,
|
|
example_outputs=example_outputs,
|
|
do_constant_folding=do_constant_folding,
|
|
operator_export_type=operator_export_type)
|
|
else:
|
|
self.run_debug_test(model, train, batch_size, state_dict, input,
|
|
use_gpu=use_gpu_, example_outputs=example_outputs,
|
|
operator_export_type=operator_export_type)
|
|
|
|
def test_linear(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
self.many_fc = nn.Sequential(
|
|
nn.Linear(4, 5, bias=True),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(5, 6, bias=True),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(6, 7, bias=True),
|
|
)
|
|
|
|
def forward(self, input):
|
|
return self.many_fc(input)
|
|
|
|
model = MyModel()
|
|
input = torch.randn(3, 4, requires_grad=True)
|
|
self.run_model_test(model, train=False, batch_size=0, input=input)
|
|
|
|
def test_onnx_export_with_parameter_renaming(self):
|
|
class SimpleFcNet(nn.Module):
|
|
def __init__(self):
|
|
super(SimpleFcNet, self).__init__()
|
|
self.fc1 = nn.Linear(5, 10)
|
|
|
|
def forward(self, input):
|
|
return self.fc1(input)
|
|
|
|
model = SimpleFcNet()
|
|
input = torch.randn(7, 5)
|
|
output = model(input)
|
|
|
|
f = io.BytesIO()
|
|
# Note that the export call explicitly sets the names of not just the input,
|
|
# but also the parameters. This test checks that the model can be loaded and
|
|
# executed in Caffe2 backend correctly.
|
|
torch.onnx._export(model, input, f, verbose=True, export_type=ExportTypes.ZIP_ARCHIVE,
|
|
input_names=['input1', 'parameter1', 'parameter2'],
|
|
keep_initializers_as_inputs=True)
|
|
|
|
f.seek(0)
|
|
model_c2 = c2.prepare_zip_archive(f)
|
|
result = model_c2.run(input.numpy())
|
|
np.testing.assert_almost_equal(output.data.cpu().numpy(), result[0], decimal=3)
|
|
|
|
def test_onnx_export_param_name_duplication(self):
|
|
class SimpleFcNet(nn.Module):
|
|
def __init__(self):
|
|
super(SimpleFcNet, self).__init__()
|
|
self.fc1 = nn.Linear(5, 10)
|
|
|
|
def forward(self, input):
|
|
return self.fc1(input)
|
|
|
|
model = SimpleFcNet()
|
|
input = torch.randn(7, 5)
|
|
output = model(input)
|
|
|
|
f = io.BytesIO()
|
|
# The export call explicitly sets the names of the input, and the first parameter.
|
|
# But note that the target first parameter name is the same as the second parameter name.
|
|
# This test checks that given this edge condition, the model can be loaded and executed
|
|
# in Caffe2 backend correctly.
|
|
torch.onnx._export(model, input, f, verbose=True, export_type=ExportTypes.ZIP_ARCHIVE,
|
|
input_names=['input1', 'fc1.bias'], _retain_param_name=False,
|
|
keep_initializers_as_inputs=True)
|
|
|
|
f.seek(0)
|
|
model_c2 = c2.prepare_zip_archive(f)
|
|
result = model_c2.run(input.numpy())
|
|
np.testing.assert_almost_equal(output.data.cpu().numpy(), result[0], decimal=3)
|
|
|
|
def test_lstm_cell(self):
|
|
model = nn.LSTMCell(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE)
|
|
input = torch.randn(BATCH_SIZE, RNN_INPUT_SIZE)
|
|
h0 = torch.randn(BATCH_SIZE, RNN_HIDDEN_SIZE)
|
|
c0 = torch.randn(BATCH_SIZE, RNN_HIDDEN_SIZE)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE, input=(input, (h0, c0)), use_gpu=False)
|
|
|
|
def test_gru_cell(self):
|
|
model = nn.GRUCell(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE)
|
|
input = torch.randn(BATCH_SIZE, RNN_INPUT_SIZE)
|
|
h0 = torch.randn(BATCH_SIZE, RNN_HIDDEN_SIZE)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE, input=(input, h0), use_gpu=False)
|
|
|
|
def _dispatch_rnn_test(self, name, *args, **kwargs):
|
|
if name == 'elman':
|
|
self._elman_rnn_test(*args, **kwargs)
|
|
if name == 'lstm':
|
|
self._lstm_test(*args, **kwargs)
|
|
if name == 'gru':
|
|
self._gru_test(*args, **kwargs)
|
|
|
|
def _elman_rnn_test(self, layers, nonlinearity, bidirectional,
|
|
initial_state, packed_sequence, dropout):
|
|
batch_first = True if packed_sequence == 2 else False
|
|
model = nn.RNN(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE,
|
|
layers,
|
|
nonlinearity=nonlinearity,
|
|
bidirectional=bidirectional,
|
|
dropout=dropout,
|
|
batch_first=batch_first)
|
|
|
|
if packed_sequence == 1:
|
|
model = RnnModelWithPackedSequence(model, False)
|
|
if packed_sequence == 2:
|
|
model = RnnModelWithPackedSequence(model, True)
|
|
|
|
def make_input(batch_size):
|
|
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size)
|
|
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
|
|
inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
|
|
inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first)
|
|
inputs = [inputs]
|
|
|
|
directions = 2 if bidirectional else 1
|
|
|
|
if initial_state:
|
|
h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
|
|
inputs.append(h0)
|
|
if packed_sequence != 0:
|
|
inputs.append(torch.IntTensor(seq_lengths))
|
|
if len(inputs) == 1:
|
|
input = inputs[0]
|
|
else:
|
|
input = tuple(inputs)
|
|
return input
|
|
|
|
input = make_input(RNN_BATCH_SIZE)
|
|
self.run_model_test(model, train=False, batch_size=RNN_BATCH_SIZE, input=input, use_gpu=False, atol=1e-7)
|
|
|
|
# test that the model still runs with a different batch size
|
|
# (save the model with a batch_size of 1 with rnn with a variable batch size,
|
|
# otherwise expand will fail)
|
|
variable_batch_size_init_input = make_input(1)
|
|
# Constant folding works when model has parameters embedded. For this case, we need to disable it
|
|
onnxir, _ = do_export(model, variable_batch_size_init_input, keep_initializers_as_inputs=True,
|
|
do_constant_folding=False)
|
|
other_input = make_input(RNN_BATCH_SIZE + 1)
|
|
_ = run_embed_params(onnxir, model, other_input, use_gpu=False)
|
|
|
|
def _lstm_test(self, layers, bidirectional, initial_state,
|
|
packed_sequence, dropout):
|
|
batch_first = True if packed_sequence == 2 else False
|
|
model = LstmFlatteningResult(
|
|
RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers,
|
|
bidirectional=bidirectional, dropout=dropout, batch_first=batch_first)
|
|
if packed_sequence == 1:
|
|
model = RnnModelWithPackedSequence(model, False)
|
|
if packed_sequence == 2:
|
|
model = RnnModelWithPackedSequence(model, True)
|
|
|
|
def make_input(batch_size):
|
|
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size)
|
|
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
|
|
inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
|
|
inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first)
|
|
inputs = [inputs]
|
|
|
|
directions = 2 if bidirectional else 1
|
|
|
|
if initial_state:
|
|
h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
|
|
c0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
|
|
inputs.append((h0, c0))
|
|
if packed_sequence != 0:
|
|
inputs.append(torch.IntTensor(seq_lengths))
|
|
if len(inputs) == 1:
|
|
input = inputs[0]
|
|
else:
|
|
input = tuple(inputs)
|
|
return input
|
|
|
|
input = make_input(RNN_BATCH_SIZE)
|
|
self.run_model_test(model, train=False, batch_size=RNN_BATCH_SIZE, input=input, use_gpu=False)
|
|
|
|
# test that the model still runs with a different batch size
|
|
# (save the model with a batch_size of 1 with rnn with a variable batch size,
|
|
# otherwise expand will fail)
|
|
variable_batch_size_init_input = make_input(1)
|
|
# Constant folding works when model has parameters embedded. For this case, we need to disable it
|
|
onnxir, _ = do_export(model, variable_batch_size_init_input, keep_initializers_as_inputs=True,
|
|
do_constant_folding=False)
|
|
other_input = make_input(RNN_BATCH_SIZE + 1)
|
|
_ = run_embed_params(onnxir, model, other_input, use_gpu=False)
|
|
|
|
def _gru_test(self, layers, bidirectional, initial_state,
|
|
packed_sequence, dropout):
|
|
batch_first = True if packed_sequence == 2 else False
|
|
model = nn.GRU(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers,
|
|
bidirectional=bidirectional, dropout=dropout, batch_first=batch_first)
|
|
if packed_sequence == 1:
|
|
model = RnnModelWithPackedSequence(model, False)
|
|
if packed_sequence == 2:
|
|
model = RnnModelWithPackedSequence(model, True)
|
|
|
|
def make_input(batch_size):
|
|
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size)
|
|
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
|
|
inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
|
|
inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first)
|
|
inputs = [inputs]
|
|
|
|
directions = 2 if bidirectional else 1
|
|
|
|
if initial_state:
|
|
h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
|
|
inputs.append(h0)
|
|
if packed_sequence != 0:
|
|
inputs.append(torch.IntTensor(seq_lengths))
|
|
if len(inputs) == 1:
|
|
input = inputs[0]
|
|
else:
|
|
input = tuple(inputs)
|
|
return input
|
|
|
|
input = make_input(RNN_BATCH_SIZE)
|
|
self.run_model_test(model, train=False, batch_size=RNN_BATCH_SIZE, input=input, use_gpu=False)
|
|
|
|
# test that the model still runs with a different batch size
|
|
# (save the model with a batch_size of 1 with rnn with a variable batch size,
|
|
# otherwise expand will fail)
|
|
variable_batch_size_init_input = make_input(1)
|
|
# Constant folding works when model has parameters embedded. For this case, we need to disable it
|
|
onnxir, _ = do_export(model, variable_batch_size_init_input, keep_initializers_as_inputs=True,
|
|
do_constant_folding=False)
|
|
other_input = make_input(RNN_BATCH_SIZE + 1)
|
|
_ = run_embed_params(onnxir, model, other_input, use_gpu=False)
|
|
|
|
def test_rnn_init_predict_split(self):
|
|
model = nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 3, bidirectional=True)
|
|
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=7)
|
|
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
|
|
input = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
|
|
input = rnn_utils.pad_sequence(input)
|
|
|
|
# Test that we are correctly splitting between init and
|
|
# predict net. When we embed parameters, there should be more
|
|
# ops in the init net.
|
|
mp = onnx.ModelProto.FromString(do_export(model, input, export_params=self.embed_params,
|
|
keep_initializers_as_inputs=True,
|
|
do_constant_folding=False)[0])
|
|
prepared = c2.prepare(mp, device='CPU')
|
|
if self.embed_params:
|
|
assert len(prepared.init_net.op) == 879
|
|
assert len(prepared.predict_net.op) == 133
|
|
else:
|
|
assert len(prepared.init_net.op) == 12
|
|
assert len(prepared.predict_net.op) == 1000
|
|
|
|
def test_alexnet(self):
|
|
state_dict = model_zoo.load_url(model_urls['alexnet'], progress=False)
|
|
self.run_model_test(alexnet(), train=False, batch_size=BATCH_SIZE,
|
|
state_dict=state_dict, atol=1e-3)
|
|
|
|
@skipIfNoCuda
|
|
def test_dcgan(self):
|
|
# dcgan is flaky on some seeds, see:
|
|
# https://github.com/ProjectToffee/onnx/pull/70
|
|
torch.manual_seed(1)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed_all(1)
|
|
|
|
netD = dcgan._netD(1)
|
|
netD.apply(dcgan.weights_init)
|
|
input = torch.randn(BATCH_SIZE, 3, dcgan.imgsz, dcgan.imgsz)
|
|
self.run_model_test(netD, train=False, batch_size=BATCH_SIZE,
|
|
input=input)
|
|
|
|
netG = dcgan._netG(1)
|
|
netG.apply(dcgan.weights_init)
|
|
state_dict = model_zoo.load_url(model_urls['dcgan_b'], progress=False)
|
|
# state_dict = model_zoo.load_url(model_urls['dcgan_f'], progress=False)
|
|
noise = torch.randn(BATCH_SIZE, dcgan.nz, 1, 1).normal_(0, 1)
|
|
self.run_model_test(netG, train=False, batch_size=BATCH_SIZE,
|
|
input=noise, state_dict=state_dict, rtol=1e-2, atol=1e-6)
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(),
|
|
"model on net has cuda in it, awaiting fix")
|
|
def test_densenet(self):
|
|
state_dict = model_zoo.load_url(model_urls['densenet121'], progress=False)
|
|
self.run_model_test(densenet121(), train=False, batch_size=BATCH_SIZE,
|
|
state_dict=state_dict, atol=1e-7)
|
|
|
|
@skip("doesn't match exactly...")
|
|
# TODO: figure out the numerical instabilities
|
|
def test_inception(self):
|
|
x = torch.randn(BATCH_SIZE, 3, 299, 299, requires_grad=True)
|
|
# state_dict = model_zoo.load_url(model_urls['inception_v3_google'], progress=False)
|
|
state_dict = None
|
|
self.run_model_test(inception_v3(), train=False, batch_size=BATCH_SIZE,
|
|
state_dict=state_dict, input=x)
|
|
|
|
@skipIfNoEmbed
|
|
def test_resnet(self):
|
|
state_dict = model_zoo.load_url(model_urls['resnet50'], progress=False)
|
|
self.run_model_test(resnet50(), train=False, batch_size=BATCH_SIZE,
|
|
state_dict=state_dict, atol=1e-5)
|
|
|
|
def test_squeezenet(self):
|
|
sqnet_v1_1 = SqueezeNet(version=1.1)
|
|
state_dict = model_zoo.load_url(model_urls['squeezenet1_1'], progress=False)
|
|
# state_dict = model_zoo.load_url(model_urls['squeezenet1_0'], progress=False)
|
|
self.run_model_test(sqnet_v1_1, train=False, batch_size=BATCH_SIZE,
|
|
state_dict=state_dict)
|
|
|
|
# @skip('takes long to run, LAPACK needed for gpu')
|
|
@skipIfNoLapack
|
|
@unittest.skip("This model takes too much memory")
|
|
def test_srresnet(self):
|
|
super_resolution_net = SRResNet(
|
|
rescale_factor=4, n_filters=64, n_blocks=8)
|
|
state_dict = model_zoo.load_url(model_urls['srresNet'], progress=False)
|
|
x = torch.randn(1, 3, 224, 224, requires_grad=True)
|
|
self.run_model_test(super_resolution_net, train=False,
|
|
batch_size=1, state_dict=state_dict,
|
|
input=x, use_gpu=False)
|
|
|
|
@skipIfTravis
|
|
@skipIfNoLapack
|
|
@skipIfNoCuda
|
|
def test_super_resolution(self):
|
|
super_resolution_net = SuperResolutionNet(upscale_factor=3)
|
|
state_dict = model_zoo.load_url(model_urls['super_resolution'], progress=False)
|
|
x = torch.randn(1, 1, 224, 224, requires_grad=True)
|
|
self.run_model_test(super_resolution_net, train=False,
|
|
batch_size=BATCH_SIZE, state_dict=state_dict,
|
|
input=x, use_gpu=False, atol=1e-6)
|
|
|
|
@unittest.skip("This model takes too much memory")
|
|
def test_vgg16(self):
|
|
state_dict = model_zoo.load_url(model_urls['vgg16'], progress=False)
|
|
self.run_model_test(vgg16(), train=False, batch_size=BATCH_SIZE,
|
|
state_dict=state_dict)
|
|
|
|
@skip("disable to run tests faster...")
|
|
def test_vgg16_bn(self):
|
|
self.run_model_test(vgg16_bn(), train=False,
|
|
batch_size=BATCH_SIZE)
|
|
|
|
@skip("disable to run tests faster...")
|
|
def test_vgg19(self):
|
|
state_dict = model_zoo.load_url(model_urls['vgg19'], progress=False)
|
|
self.run_model_test(vgg19(), train=False, batch_size=BATCH_SIZE,
|
|
state_dict=state_dict)
|
|
|
|
@skip("disable to run tests faster...")
|
|
def test_vgg19_bn(self):
|
|
self.run_model_test(vgg19_bn(), train=False,
|
|
batch_size=BATCH_SIZE)
|
|
|
|
def run_word_language_model(self, model_name):
|
|
ntokens = 50
|
|
emsize = 5
|
|
nhid = 5
|
|
nlayers = 5
|
|
dropout = 0.2
|
|
tied = False
|
|
batchsize = 5
|
|
model = word_language_model.RNNModel(model_name, ntokens, emsize,
|
|
nhid, nlayers, dropout, tied,
|
|
batchsize)
|
|
x = torch.arange(0, ntokens).long().view(-1, batchsize)
|
|
# Only support CPU version, since tracer is not working in GPU RNN.
|
|
self.run_model_test(model, train=False, input=(x, model.hidden),
|
|
batch_size=batchsize, use_gpu=False)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_word_language_model_RNN_TANH(self):
|
|
self.run_word_language_model("RNN_TANH")
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_word_language_model_RNN_RELU(self):
|
|
self.run_word_language_model("RNN_RELU")
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_word_language_model_LSTM(self):
|
|
self.run_word_language_model("LSTM")
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_word_language_model_GRU(self):
|
|
self.run_word_language_model("GRU")
|
|
|
|
def test_batchnorm1d_special(self):
|
|
c = torch.randn(BATCH_SIZE, 224)
|
|
model = nn.BatchNorm1d(224)
|
|
self.run_model_test(model, train=True, input=c, batch_size=BATCH_SIZE)
|
|
|
|
def test_batchnorm1d(self):
|
|
c = torch.randn(BATCH_SIZE, 224, 224)
|
|
model = nn.BatchNorm1d(224)
|
|
self.run_model_test(model, train=True, input=c, batch_size=BATCH_SIZE)
|
|
|
|
def test_batchnorm1d_noaffine(self):
|
|
c = torch.randn(BATCH_SIZE, 224)
|
|
model = nn.BatchNorm1d(224, affine=False)
|
|
self.run_model_test(model, train=False, input=c, batch_size=BATCH_SIZE)
|
|
|
|
def test_batchnorm2d_noaffine(self):
|
|
c = torch.randn(128, 128, 1, 1)
|
|
model = nn.BatchNorm2d(128, affine=False)
|
|
self.run_model_test(model, train=False, input=c, batch_size=BATCH_SIZE)
|
|
|
|
def test_batchnorm3d_noaffine(self):
|
|
c = torch.randn(128, 128, 1, 1, 1)
|
|
model = nn.BatchNorm3d(128, affine=False)
|
|
self.run_model_test(model, train=False, input=c, batch_size=BATCH_SIZE)
|
|
|
|
def test_constant(self):
|
|
c = torch.randn(BATCH_SIZE, 3, 224, 224)
|
|
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, input):
|
|
return input + c.type_as(input)
|
|
|
|
self.run_model_test(MyModel(), train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_consumed_bn(self):
|
|
underlying = nn.BatchNorm2d(3)
|
|
self.run_model_test(underlying, train=True, batch_size=BATCH_SIZE)
|
|
|
|
def _test_index_generic(self, fn):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, input):
|
|
return fn(input)
|
|
|
|
m1 = torch.randn(3, 4, 5, 6, 7)
|
|
self.run_model_test(MyModel(), input=m1, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_index_1d(self):
|
|
self._test_index_generic(lambda input: input[0])
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_index_2d_1dimslice(self):
|
|
self._test_index_generic(lambda input: input[0:1, :])
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_index_2d_sliceint(self):
|
|
self._test_index_generic(lambda input: input[1, :])
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_index_2d_neg_slice(self):
|
|
self._test_index_generic(lambda input: input[0:-1, :])
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_index_2d_2dimslice(self):
|
|
self._test_index_generic(lambda input: input[0:1, 0:1])
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_index_2d_neg_slice2dim(self):
|
|
self._test_index_generic(lambda input: input[0:-1, 0:-1])
|
|
|
|
def test_tensor_index_1d(self):
|
|
self._test_index_generic(lambda input: input[torch.tensor([0, 2])])
|
|
|
|
def test_tensor_index_2d_1dconstant(self):
|
|
self._test_index_generic(lambda input: input[1, torch.tensor([0, 2])])
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_tensor_index_2d_1dslice(self):
|
|
self._test_index_generic(lambda input: input[torch.tensor([0, 2]), 0:1])
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_tensor_index_2d_1dslice_first(self):
|
|
self._test_index_generic(lambda input: input[1:3, torch.tensor([0, 2])])
|
|
|
|
def test_tensor_index_newaxis(self):
|
|
self._test_index_generic(lambda input: input[None, torch.tensor([0, 2])])
|
|
|
|
def test_tensor_index_advanced_indexing(self):
|
|
self._test_index_generic(
|
|
lambda input: input[:, torch.tensor([[0, 2], [1, 1]]), :, torch.tensor([2, 1]), torch.tensor([0, 3])])
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_tensor_index_advanced_indexing_with_slice(self):
|
|
self._test_index_generic(lambda input: input[:, torch.tensor([0, 2]), None, 2:4, torch.tensor([[1, 3], [4, 0]])])
|
|
self._test_index_generic(lambda input: input[:, torch.tensor([0, 2]), torch.tensor([1]), 2:4, torch.tensor([[1], [4]])])
|
|
|
|
def test_tensor_index_advanced_indexing_consecutive(self):
|
|
self._test_index_generic(lambda input: input[:, torch.tensor([0, 2]), torch.tensor([[1, 3], [4, 0]]), None])
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_tensor_index_advanced_indexing_masked(self):
|
|
self._test_index_generic(
|
|
lambda input: input[:, torch.tensor([1, 0, 1, 0], dtype=torch.uint8), torch.tensor([[1, 3], [4, 0]]), None])
|
|
|
|
def test_chunk(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, input):
|
|
# TODO: Why index? This returns a tuple and test runner doesn't
|
|
# support tuple comparison.
|
|
return input.chunk(8, dim=2)[-1]
|
|
self.run_model_test(MyModel(), train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_sqrt(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, input):
|
|
return input.sqrt()
|
|
input = torch.empty(BATCH_SIZE, 10, 10).uniform_(4, 9)
|
|
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
|
|
|
|
def test_rsqrt(self):
|
|
class MyModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return input.rsqrt()
|
|
|
|
input = torch.randn(4, 2, 3, requires_grad=True)
|
|
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
|
|
|
|
def test_log(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, input):
|
|
return input.log()
|
|
input = torch.empty(BATCH_SIZE, 10, 10).uniform_(4, 9)
|
|
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_erf(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, input):
|
|
return input.erf()
|
|
input = torch.empty(BATCH_SIZE, 10, 10).uniform_(4, 9)
|
|
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
|
|
|
|
def test_trigonometry(self):
|
|
def test_func(name):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, input):
|
|
return getattr(input, name)()
|
|
input = torch.empty(BATCH_SIZE, 10, 10).uniform_()
|
|
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
|
|
|
|
test_func('cos')
|
|
test_func('sin')
|
|
test_func('tan')
|
|
test_func('acos')
|
|
test_func('asin')
|
|
test_func('atan')
|
|
|
|
def test_addconstant(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, input):
|
|
# TODO: Why index? This returns a tuple and test runner doesn't
|
|
# support tuple comparison.
|
|
return input + 1
|
|
self.run_model_test(MyModel(), train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_subconstant(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, input):
|
|
# TODO: Why index? This returns a tuple and test runner doesn't
|
|
# support tuple comparison.
|
|
return input - 1
|
|
self.run_model_test(MyModel(), train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_arithmetic(self):
|
|
class ArithmeticModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
x = x + 2
|
|
x = x - 4
|
|
x = x * 6
|
|
x = x / 8
|
|
return x
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_model_test(ArithmeticModule(), input=x, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_embedding(self):
|
|
model = nn.Embedding(10, 3, padding_idx=-1)
|
|
input = torch.LongTensor(list(range(10))[::-1])
|
|
self.run_model_test(model, train=False, input=input, batch_size=BATCH_SIZE)
|
|
|
|
def test_constantpad2d(self):
|
|
model = nn.ConstantPad2d((1, 2, 3, 4), 3.5)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_reflectionpad2d(self):
|
|
model = nn.ReflectionPad2d((1, 2, 3, 4))
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_replicationpad2d(self):
|
|
model = nn.ReplicationPad2d((1, 2, 3, 4))
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_maxpool2d(self):
|
|
model = nn.MaxPool2d(5, padding=(1, 2))
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_maxpool2d_single_padding(self):
|
|
model = nn.MaxPool2d(5, padding=2)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_maxpool1d_ceil(self):
|
|
model = nn.MaxPool1d(3, 2, ceil_mode=True)
|
|
x = torch.randn(20, 16, 50, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_maxpool2d_ceil(self):
|
|
model = nn.MaxPool2d(3, 2, ceil_mode=True)
|
|
x = torch.randn(20, 16, 50, 32, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_maxpool3d_ceil(self):
|
|
model = nn.MaxPool3d(3, 2, ceil_mode=True)
|
|
x = torch.randn(20, 16, 50, 44, 31, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@unittest.skip("C2 and PyTorch have small difference in padding implementation")
|
|
def test_avgpool2d(self):
|
|
model = nn.AvgPool2d(5, padding=(2))
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_avgpool2d_with_count_include_pad_set_false(self):
|
|
model = nn.AvgPool2d(7, padding=(2), count_include_pad=False)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_avgpool2d_with_count_include_pad_set_true(self):
|
|
model = nn.AvgPool2d(7, padding=(2), count_include_pad=True)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_avgpool2d_no_padding(self):
|
|
model = nn.AvgPool2d(5)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_avg_pool1D_ceil(self):
|
|
model = torch.nn.AvgPool1d(3, 2, ceil_mode=True)
|
|
x = torch.randn(1, 1, 7, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_avg_pool2D_ceil(self):
|
|
model = torch.nn.AvgPool2d(3, 2, ceil_mode=True)
|
|
x = torch.randn(20, 16, 50, 32, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_avg_pool3D_ceil(self):
|
|
model = torch.nn.AvgPool3d(3, 2, ceil_mode=True)
|
|
x = torch.randn(20, 16, 50, 44, 31, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_adaptive_avg_pool1D(self):
|
|
model = torch.nn.AdaptiveAvgPool1d((5))
|
|
x = torch.randn(20, 16, 50, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_adaptive_avg_pool2D(self):
|
|
model = torch.nn.AdaptiveAvgPool2d((5, 4))
|
|
x = torch.randn(20, 16, 50, 32, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_adaptive_avg_pool3D(self):
|
|
model = torch.nn.AdaptiveAvgPool3d((5, 4, 3))
|
|
x = torch.randn(20, 16, 50, 44, 30, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(8)
|
|
def test_adaptive_max_pool1D(self):
|
|
model = torch.nn.AdaptiveMaxPool1d((5))
|
|
x = torch.randn(20, 16, 50, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(8)
|
|
def test_adaptive_max_pool2D(self):
|
|
model = torch.nn.AdaptiveMaxPool2d((5, 4))
|
|
x = torch.randn(20, 16, 50, 32, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(8)
|
|
def test_adaptive_max_pool3D(self):
|
|
model = torch.nn.AdaptiveMaxPool3d((5, 4, 3))
|
|
x = torch.randn(20, 16, 50, 44, 30, requires_grad=True)
|
|
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_weight_norm(self):
|
|
model = nn.utils.weight_norm(nn.Conv1d(1, 1, 3))
|
|
input = torch.randn(1, 1, 5, requires_grad=True)
|
|
self.run_model_test(
|
|
model, train=True, batch_size=0, input=input, use_gpu=False
|
|
)
|
|
|
|
def test_mnist(self):
|
|
model = MNIST()
|
|
input = torch.randn(BATCH_SIZE, 1, 28, 28)
|
|
state_dict = None
|
|
# TODO: test with state_dict
|
|
self.run_model_test(model, train=False, input=input, batch_size=BATCH_SIZE,
|
|
state_dict=state_dict)
|
|
|
|
def test_mm(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, m1, m2):
|
|
return torch.mm(m1, m2)
|
|
m1 = torch.randn(3, 4)
|
|
m2 = torch.randn(4, 5)
|
|
self.run_model_test(MyModel(), train=False, input=(m1, m2), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_addmm(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, ma, m1, m2):
|
|
return torch.addmm(ma, m1, m2)
|
|
ma = torch.randn(5)
|
|
m1 = torch.randn(3, 4)
|
|
m2 = torch.randn(4, 5)
|
|
self.run_model_test(MyModel(), train=False, input=(ma, m1, m2), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_fuse_addmm(self):
|
|
class AddmmModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.mm(x, x) + x
|
|
|
|
x = torch.randn(3, 3)
|
|
self.run_model_test(AddmmModel(), train=False, input=x, batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_scalar_type(self):
|
|
class ArithmeticModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.size(0) * 2 * x
|
|
|
|
x = torch.ones(2, 3, dtype=torch.float32)
|
|
self.run_model_test(ArithmeticModel(), input=x, train=False, batch_size=BATCH_SIZE)
|
|
|
|
class ReciprocalModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.reciprocal(x)
|
|
|
|
x = torch.tensor([2.0, 4.0], dtype=torch.double)
|
|
self.run_model_test(ReciprocalModel(), input=x, train=False, batch_size=BATCH_SIZE)
|
|
|
|
class ComparisonModel(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x.ge(0.5) & y.le(2)
|
|
|
|
x = torch.ones(2, 3, dtype=torch.int32)
|
|
y = torch.ones(2, 3, dtype=torch.float32)
|
|
self.run_model_test(ComparisonModel(), input=(x, y), train=False, batch_size=BATCH_SIZE)
|
|
|
|
class MatMulModel(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return torch.mm(x, y)
|
|
|
|
x = torch.ones(3, 4)
|
|
y = torch.ones(4, 5)
|
|
self.run_model_test(MatMulModel(), input=(x, y), train=False, batch_size=BATCH_SIZE)
|
|
|
|
class AddMMModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.mm(x, x) + x
|
|
|
|
x = torch.ones(3, 3)
|
|
self.run_model_test(AddMMModel(), input=x, train=False, batch_size=BATCH_SIZE)
|
|
|
|
# test for a pytorch optimization pass, see https://github.com/pytorch/pytorch/pull/7872
|
|
def test_consecutive_transposes(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x.transpose(1, 2).transpose(2, 3)
|
|
x = torch.randn(5, 6, 7, 8)
|
|
self.run_model_test(MyModel(), train=False, input=x, batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_sum(self):
|
|
shape = (3, 4, 5)
|
|
for params in [{}] + [{'dim': i} for i in range(len(shape))]:
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return torch.sum(x, **params)
|
|
x = torch.randn(*shape)
|
|
self.run_model_test(MyModel(), train=False, input=(x), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_cumsum(self):
|
|
shape = (3, 4, 5)
|
|
for params in [{'dim': i} for i in range(len(shape))]:
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return torch.cumsum(x, **params)
|
|
x = torch.randn(*shape)
|
|
self.run_model_test(MyModel(), train=False, input=(x), batch_size=BATCH_SIZE, use_gpu=False,
|
|
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
|
|
|
|
def test_cosine_similarity(self):
|
|
shape = (100, 128)
|
|
x = torch.randn(*shape)
|
|
y = torch.randn(*shape)
|
|
self.run_model_test(torch.nn.CosineSimilarity(dim=1, eps=1e-6), train=False,
|
|
input=(x, y), batch_size=BATCH_SIZE, use_gpu=False,
|
|
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_lstm_constant_folding(self):
|
|
class LstmNet(nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_layers, bidirectional):
|
|
super(LstmNet, self).__init__()
|
|
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bidirectional=bidirectional)
|
|
|
|
def forward(self, input, initial_state):
|
|
return self.lstm(input, initial_state)
|
|
|
|
def get_LstmNet_model_and_inputs(input_size, hidden_size, num_layers, batch_size,
|
|
seq_len, bidirectional):
|
|
num_directions = 2 if bidirectional else 1
|
|
model = LstmNet(input_size, hidden_size, num_layers, bidirectional)
|
|
input = torch.randn(seq_len, batch_size, input_size)
|
|
h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size)
|
|
c0 = torch.randn(num_layers * num_directions, batch_size, hidden_size)
|
|
return model, (input, (h0, c0))
|
|
|
|
batch_size1 = 3
|
|
model1, input1 = get_LstmNet_model_and_inputs(7, 3, 2, batch_size1, 5, True)
|
|
self.run_actual_test(model1, train=False, batch_size=batch_size1, input=input1, use_gpu=False, do_constant_folding=True)
|
|
|
|
batch_size2 = 4
|
|
model2, input2 = get_LstmNet_model_and_inputs(5, 4, 3, batch_size2, 7, False)
|
|
self.run_actual_test(model2, train=False, batch_size=batch_size2, input=input2, use_gpu=False, do_constant_folding=True)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_gru_constant_folding(self):
|
|
class GruNet(nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_layers, bidirectional):
|
|
super(GruNet, self).__init__()
|
|
self.mygru = nn.GRU(input_size, hidden_size, num_layers, bidirectional=bidirectional)
|
|
|
|
def forward(self, input, initial_state):
|
|
out = self.mygru(input, initial_state)
|
|
return out
|
|
|
|
def get_GruNet_model_and_inputs(input_size, hidden_size, num_layers, batch_size,
|
|
seq_len, bidirectional):
|
|
num_directions = 2 if bidirectional else 1
|
|
model = GruNet(input_size, hidden_size, num_layers, bidirectional)
|
|
input = torch.randn(seq_len, batch_size, input_size)
|
|
h0 = torch.randn(num_layers * num_directions, batch_size, hidden_size)
|
|
return model, (input, h0)
|
|
|
|
batch_size1 = 3
|
|
model1, input1 = get_GruNet_model_and_inputs(7, 3, 2, batch_size1, 5, True)
|
|
self.run_actual_test(model1, train=False, batch_size=batch_size1, input=input1, use_gpu=False, do_constant_folding=True)
|
|
|
|
batch_size2 = 4
|
|
model2, input2 = get_GruNet_model_and_inputs(5, 4, 3, batch_size2, 7, False)
|
|
self.run_actual_test(model2, train=False, batch_size=batch_size2, input=input2, use_gpu=False, do_constant_folding=True)
|
|
|
|
def test_repeat(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x.repeat(1, 2, 3, 4)
|
|
|
|
x = torch.randn(4, 3, 2, 1, requires_grad=True)
|
|
self.run_model_test(MyModel(), train=False, input=(x), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_upsample(self):
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
model = nn.Upsample(size=[v * 2 for v in x.size()[2:]], mode='nearest')
|
|
self.run_model_test(model, train=False, input=(x),
|
|
batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_interpolate_upsample(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
size = [v * 2 for v in x.size()[2:]]
|
|
# work around for now: turn the dynamic sizes into constant
|
|
size = [int(i) for i in size]
|
|
return nn.functional.interpolate(x,
|
|
size=size,
|
|
mode='nearest')
|
|
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
model = MyModel()
|
|
self.run_model_test(model, train=False, input=(x),
|
|
batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedOpsetVersion([7, 8, 10])
|
|
def test_interpolate_upsample_dynamic_sizes(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
size = [v * 2 for v in x.size()[2:]]
|
|
return nn.functional.interpolate(x,
|
|
size=size,
|
|
mode='nearest')
|
|
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
model = MyModel()
|
|
self.run_model_test(model, train=False, input=(x),
|
|
batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_repeat_dim_overflow(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x.repeat(1, 2, 3, 4)
|
|
|
|
x = torch.randn(1, 2, requires_grad=True)
|
|
self.run_model_test(MyModel(), train=False, input=(x), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_repeat_dynamic(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x, y):
|
|
return x.repeat(y.size()[0] // 2, y.size()[1] * 2)
|
|
|
|
x = torch.randn(1, 2, requires_grad=True)
|
|
y = torch.randn(2, 4, requires_grad=True)
|
|
self.run_model_test(MyModel(), train=False, input=(x, y), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_mean(self):
|
|
shape = (3, 4, 5)
|
|
for params in [{}] + [{'dim': i} for i in range(len(shape))]:
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return torch.mean(x, **params)
|
|
x = torch.randn(*shape)
|
|
self.run_model_test(MyModel(), train=False, input=(x), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
# TODO: Add test cases for prod once Caffe2 has support for ReduceProd
|
|
def test_softmax(self):
|
|
for i in range(2, 8):
|
|
for d in range(0, i - 1):
|
|
model = nn.Softmax(dim=d)
|
|
dims = [2] * (i - 2) + [3, 4]
|
|
input = torch.ones(*dims, requires_grad=True)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE, input=input)
|
|
|
|
def test_softmax_dtype(self):
|
|
class SoftmaxModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return nn.functional.softmax(input, dim=0, dtype=torch.float64)
|
|
|
|
x = torch.randn(1, 2, 3, requires_grad=True, dtype=torch.float32)
|
|
self.run_model_test(SoftmaxModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_logsoftmax(self):
|
|
for i in range(7)[2:]:
|
|
model = nn.LogSoftmax(dim=i - 1)
|
|
dims = [2] * (i - 2) + [3, 4]
|
|
input = torch.ones(*dims, requires_grad=True)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE, input=input)
|
|
|
|
def test_logsoftmax_dim(self):
|
|
for i in range(-4, 3):
|
|
model = nn.LogSoftmax(dim=i)
|
|
input = torch.randn(3, 4, 5, 6)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE, input=input)
|
|
|
|
def test_randn(self):
|
|
x = torch.randn(1, 2, 3, 4)
|
|
|
|
class MyModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return (torch.randn(1, 2, 3, 4) + x).shape
|
|
self.run_model_test(MyModule(), train=False, input=(x),
|
|
batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_rand(self):
|
|
x = torch.randn(1, 2, 3, 4)
|
|
|
|
class MyModule(torch.nn.Module):
|
|
def forward(self, x):
|
|
return (torch.rand(1, 2, 3, 4) + x).shape
|
|
self.run_model_test(MyModule(), train=False, input=(x),
|
|
batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_convtranspose(self):
|
|
model = nn.ConvTranspose2d(3, 3, 3, stride=3, bias=False, padding=1, output_padding=2)
|
|
self.run_model_test(model, train=False, batch_size=BATCH_SIZE, atol=1e-7)
|
|
|
|
def test_unsqueeze(self):
|
|
shape = (3, 4, 5)
|
|
# test negative dim as well.
|
|
for dim in range(-len(shape) - 1, len(shape) + 1):
|
|
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x.unsqueeze(dim)
|
|
x = torch.randn(*shape)
|
|
self.run_model_test(MyModel(), train=False, input=(x), batch_size=BATCH_SIZE, atol=1e-7)
|
|
|
|
def test_squeeze(self):
|
|
shape = (1, 1, 1)
|
|
# test negative dim as well
|
|
for dim in range(-len(shape), len(shape)):
|
|
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x.squeeze(dim)
|
|
x = torch.randn(*shape)
|
|
self.run_model_test(MyModel(), train=False, input=(x), batch_size=BATCH_SIZE, atol=1e-7)
|
|
|
|
# NB: InstanceNorm model includes unused weights, so skip this in TestCaffe2BackendEmbed
|
|
# TODO: We should have another pass to eliminate the unused initializers in ONNX models.
|
|
@skipIfEmbed
|
|
def test_instance_norm(self):
|
|
underlying = nn.InstanceNorm2d(3)
|
|
self.run_model_test(underlying, train=False, batch_size=BATCH_SIZE)
|
|
|
|
def test_pixel_shuffle(self):
|
|
underlying = nn.PixelShuffle(4)
|
|
shape = (1, 32, 5, 5)
|
|
input = Variable(torch.randn(*shape),
|
|
requires_grad=True)
|
|
self.run_model_test(underlying, train=False, input=(input),
|
|
batch_size=BATCH_SIZE)
|
|
|
|
def test_dynamic_sizes(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x):
|
|
shape = torch.onnx.operators.shape_as_tensor(x)
|
|
new_shape = torch.cat((torch.LongTensor([-1]), shape[0].view(1)))
|
|
return torch.onnx.operators.reshape_from_tensor_shape(x, new_shape)
|
|
x = torch.randn(3, 5, 7)
|
|
self.run_model_test(MyModel(), train=False, input=x, batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_advanced_broadcast(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, x, y):
|
|
return torch.mul(x, y)
|
|
x = torch.randn(1, 5, 10)
|
|
y = torch.randn(1, 5, 1)
|
|
self.run_model_test(MyModel(), train=False, input=(x, y), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_int8_export(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
self.param = torch.ByteTensor(3, 4).random_()
|
|
|
|
def forward(self, x):
|
|
return x * self.param.float()
|
|
|
|
import io
|
|
f = io.BytesIO()
|
|
from torch.onnx import ExportTypes
|
|
torch.onnx._export(MyModel(), (torch.rand(3, 4),), f, verbose=True, export_type=ExportTypes.ZIP_ARCHIVE,
|
|
keep_initializers_as_inputs=True)
|
|
|
|
X = np.random.rand(3, 4).astype(np.float32)
|
|
|
|
f.seek(0)
|
|
import caffe2.python.onnx.backend as c2
|
|
model = c2.prepare_zip_archive(f)
|
|
model.run(X)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_neg_slice(self):
|
|
class NegSlice(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x[-1, :, :]
|
|
|
|
x = torch.randn(3, 4, 5)
|
|
self.run_model_test(NegSlice(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_neg_slice_large(self):
|
|
class NegSlice(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x[:, :, :, :, -3]
|
|
|
|
x = torch.randn(3, 4, 5, 6, 7)
|
|
self.run_model_test(NegSlice(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@unittest.skip('https://github.com/pytorch/pytorch/issues/10984')
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_neg_slice_large_negone(self):
|
|
class NegSlice(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x[:, :, :, :, -1]
|
|
|
|
x = torch.randn(3, 4, 5, 6, 7)
|
|
self.run_model_test(NegSlice(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(11)
|
|
def test_dynamic_slice(self):
|
|
class DynamicSliceExportMod(torch.nn.Module):
|
|
def forward(self, x):
|
|
results = []
|
|
for i in range(4):
|
|
results.append(x[:x.size(0) - i, i:x.size(2), i:3])
|
|
return tuple(results)
|
|
|
|
x = torch.rand(5, 5, 5)
|
|
self.run_model_test(DynamicSliceExportMod(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(11)
|
|
def test_dynamic_slice_script(self):
|
|
class DynamicSliceModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
return x[1:x.size(0)]
|
|
module = DynamicSliceModel()
|
|
x = torch.rand(1, 2)
|
|
example_output = module(x)
|
|
self.run_model_test(DynamicSliceModel(), train=False, input=(x,),
|
|
batch_size=BATCH_SIZE, use_gpu=False, example_outputs=example_output)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(11)
|
|
def test_dynamic_slice_to_the_end(self):
|
|
class DynamicSliceExportMod(torch.nn.Module):
|
|
def forward(self, x):
|
|
results = []
|
|
for i in range(4):
|
|
results.append(x[:, i:, x.size(2) - 5])
|
|
return tuple(results)
|
|
|
|
x = torch.rand(5, 5, 5)
|
|
self.run_model_test(DynamicSliceExportMod(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_unbind(self):
|
|
class UnbindModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return input.unbind()
|
|
|
|
x = torch.randn(3, 4, 5)
|
|
self.run_model_test(UnbindModel(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
class UnbindModel2(torch.nn.Module):
|
|
def forward(self, input):
|
|
_, out, _, _ = input.unbind(1)
|
|
return out
|
|
|
|
x = torch.randn(3, 4, 5)
|
|
self.run_model_test(UnbindModel2(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_inplace_zero(self):
|
|
class Zero_(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.zero_()
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_model_test(Zero_(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_inplace_fill(self):
|
|
class Fill_(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.fill_(3)
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_model_test(Fill_(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
# ConstantFill is a deprecated experimental op (used in opsets < 9).
|
|
# Shape inference does not cover this op.
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_inplace_arithmetic(self):
|
|
class Arithmetic(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self):
|
|
x = torch.ones(2, 3, 4)
|
|
y = torch.ones(2, 3, 4) * 2
|
|
x.add_(3)
|
|
y.mul_(x)
|
|
return x, y
|
|
|
|
x = torch.ones(2, 3, 4)
|
|
y = torch.ones(2, 3, 4) * 2
|
|
self.run_model_test(Arithmetic(),
|
|
train=False, input=(), batch_size=BATCH_SIZE,
|
|
use_gpu=False, example_outputs=(x + 3, y * (x + 3)))
|
|
|
|
def test_tensor_factories(self):
|
|
class TensorFactory(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.zeros(x.size()) + torch.ones(x.size())
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_model_test(TensorFactory(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_tensor_factories_script(self):
|
|
class TensorFactory(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
return torch.zeros(x.shape, dtype=torch.float) + torch.ones(x.shape, dtype=torch.float)
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_model_test(TensorFactory(), train=False, input=(x,), batch_size=BATCH_SIZE,
|
|
use_gpu=False, example_outputs=(torch.ones(x.size()),))
|
|
|
|
def test_tensor_like_factories_script(self):
|
|
class TensorFactory(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
zeros = torch.zeros_like(x, dtype=torch.float, layout=torch.strided, device=torch.device('cpu'))
|
|
ones = torch.ones_like(x, dtype=torch.float, layout=torch.strided, device=torch.device('cpu'))
|
|
return zeros + ones
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_model_test(TensorFactory(), train=False, input=(x,), batch_size=BATCH_SIZE,
|
|
use_gpu=False, example_outputs=(torch.ones(x.size()),))
|
|
|
|
def test_full(self):
|
|
class FullModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.full((3, 4), x, dtype=torch.long)
|
|
|
|
x = torch.tensor(12)
|
|
self.run_model_test(FullModel(), train=False, input=(x,), batch_size=BATCH_SIZE,
|
|
use_gpu=False)
|
|
|
|
def test_full_script(self):
|
|
class FullClass(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
return torch.full((4, 5), x, dtype=torch.long)
|
|
|
|
x = torch.tensor(12)
|
|
self.run_model_test(FullClass(), train=False, input=(x,), batch_size=BATCH_SIZE,
|
|
use_gpu=False, example_outputs=FullClass()(x))
|
|
|
|
def test_clamp(self):
|
|
class ClampModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.clamp(-0.5, 0.5)
|
|
|
|
x = torch.randn(3, 4)
|
|
self.run_model_test(ClampModel(), train=False, input=(x,), batch_size=BATCH_SIZE)
|
|
|
|
class ClampMinModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.clamp(min=-0.5)
|
|
|
|
x = torch.randn(3, 4)
|
|
self.run_model_test(ClampMinModel(), train=False, input=(x,), batch_size=BATCH_SIZE)
|
|
|
|
class ClampMaxModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.clamp(max=0.5)
|
|
|
|
x = torch.randn(3, 4)
|
|
self.run_model_test(ClampMaxModel(), train=False, input=(x,), batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_where_functional(self):
|
|
class WhereFunctional(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.where(x > 2.0, x, torch.neg(x))
|
|
|
|
x = torch.randn(3, 4)
|
|
self.run_model_test(WhereFunctional(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_where_method(self):
|
|
class WhereMethod(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.where(x > 2.0, torch.neg(x))
|
|
|
|
x = torch.randn(3, 4)
|
|
self.run_model_test(WhereMethod(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_data_dependent_zeros_factory(self):
|
|
class ZerosFactory(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.cat([input, torch.zeros(input.size(0), 1).type_as(input)], dim=1)
|
|
|
|
x = torch.zeros(3, 4)
|
|
self.run_model_test(ZerosFactory(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_implicit_expand(self):
|
|
class ImplicitExpandExportMod(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x + 1
|
|
|
|
x = torch.randn(3, 4)
|
|
self.run_model_test(ImplicitExpandExportMod(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_reduce_sum(self):
|
|
class ReduceSumNegativeIndices(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.sum(-1)
|
|
|
|
x = torch.randn(2, 3, 4)
|
|
self.run_model_test(ReduceSumNegativeIndices(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
def test_reduce_sum_multi_dim(self):
|
|
class ReduceSumMultipleAxes(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.sum(dim=(2, 3), keepdim=True)
|
|
|
|
x = torch.randn(16, 3, 256, 256)
|
|
self.run_model_test(ReduceSumMultipleAxes(), train=False, input=(x,), batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
# InstanceNorm model (used in the subgraph) includes unused weights,
|
|
# so skip this in TestCaffe2BackendEmbed
|
|
@skipIfEmbed
|
|
def test_group_norm(self):
|
|
c = torch.randn(BATCH_SIZE, 6, 224, 224)
|
|
model = nn.GroupNorm(3, 6, eps=0.0002)
|
|
self.run_model_test(model, train=True, input=c, batch_size=BATCH_SIZE)
|
|
|
|
# InstanceNorm model (used in the subgraph) includes unused weights,
|
|
# so skip this in TestCaffe2BackendEmbed
|
|
@skipIfEmbed
|
|
def test_group_norm_noaffine(self):
|
|
c = torch.randn(BATCH_SIZE, 6, 224, 224)
|
|
model = nn.GroupNorm(3, 6, eps=0.0002, affine=False)
|
|
self.run_model_test(model, train=True, input=c, batch_size=BATCH_SIZE)
|
|
|
|
def test_rsub(self):
|
|
class RsubModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return 1 - x
|
|
|
|
x = torch.randn(1, 2)
|
|
self.run_model_test(RsubModel(), train=False, input=(x,),
|
|
batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_isnan(self):
|
|
class IsNaNModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.isnan(input)
|
|
|
|
x = torch.tensor([1.0, float('nan'), 2.0])
|
|
self.run_model_test(IsNaNModel(), train=False, input=x, batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_scatter(self):
|
|
class ScatterModel(torch.nn.Module):
|
|
def forward(self, input, indices, values):
|
|
return input.scatter(1, indices, values)
|
|
|
|
input = torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
|
|
indices = torch.tensor([[1, 0], [0, 2], [0, 1]], dtype=torch.int64)
|
|
values = torch.tensor([[1.0, 1.1], [2.0, 2.1], [3.0, 3.1]])
|
|
self.run_model_test(ScatterModel(), train=False, input=(input, indices, values),
|
|
batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
input = torch.zeros(3, 4, 5, 6)
|
|
indices = torch.tensor([[1, 0], [0, 2], [0, 1]], dtype=torch.int64)
|
|
indices = indices.view(3, 2, 1, 1).expand(3, 2, 5, 6)
|
|
values = torch.arange(3 * 2 * 5 * 6, dtype=torch.float32).view(3, 2, 5, 6)
|
|
self.run_model_test(ScatterModel(), train=False, input=(input, indices, values),
|
|
batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
input = torch.zeros(3, 4, 2)
|
|
indices = torch.tensor([[[1, 0], [0, 2]], [[1, 1], [0, 1]], [[2, 1], [2, 2]]])
|
|
values = torch.arange(3 * 2 * 2, dtype=torch.float32).view(3, 2, 2)
|
|
self.run_model_test(ScatterModel(), train=False, input=(input, indices, values),
|
|
batch_size=BATCH_SIZE, use_gpu=False)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_flatten(self):
|
|
class FlattenModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.flatten(input)
|
|
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_model_test(FlattenModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_flatten2D(self):
|
|
class FlattenModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.flatten(input, 1)
|
|
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_model_test(FlattenModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_max(self):
|
|
class MaxModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.max(input, dim=1)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
self.run_model_test(MaxModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_max_keepdim(self):
|
|
class MaxModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.max(input, dim=1, keepdim=True)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
self.run_model_test(MaxModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_max_tensors(self):
|
|
class MaxModel(torch.nn.Module):
|
|
def forward(self, input, other):
|
|
return torch.max(input, other)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
self.run_model_test(MaxModel(), train=False, input=(x, y), batch_size=BATCH_SIZE)
|
|
|
|
def test_min(self):
|
|
class MinModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.min(input, dim=1)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
self.run_model_test(MinModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_argmax(self):
|
|
class ArgmaxModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.argmax(input, dim=1)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
self.run_model_test(ArgmaxModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_argmax_none_dim(self):
|
|
class ArgmaxModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.argmax(input)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
self.run_model_test(ArgmaxModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_argmin(self):
|
|
class ArgminModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.argmin(input, dim=1)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
self.run_model_test(ArgminModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_argmin_none_dim(self):
|
|
class ArgminModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.argmin(input)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
self.run_model_test(ArgminModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_reshape(self):
|
|
class ReshapeModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return input.reshape(1, 1)
|
|
|
|
x = torch.randn(1, requires_grad=True)
|
|
self.run_model_test(ReshapeModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_reshape_as(self):
|
|
class ReshapeAsModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
y = torch.randn(3, 1, 2, 1, requires_grad=False)
|
|
return input.reshape_as(y)
|
|
|
|
x = torch.randn(2, 3, requires_grad=True)
|
|
self.run_model_test(ReshapeAsModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
def test_narrow(self):
|
|
class NarrowModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.narrow(input, 0, 0, 2)
|
|
|
|
x = torch.randn(3, 3, requires_grad=True)
|
|
self.run_model_test(NarrowModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_randn_like(self):
|
|
class RandNLikeModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.randn_like(input)
|
|
|
|
x = torch.randn(2, 3, 4, requires_grad=False)
|
|
model = RandNLikeModel()
|
|
onnxir, _ = do_export(model, x, keep_initializers_as_inputs=True)
|
|
onnx_model = onnx.ModelProto.FromString(onnxir)
|
|
prepared = c2.prepare(onnx_model)
|
|
caffe2_out = prepared.run(inputs=[x.cpu().numpy()])
|
|
self.assertEqual(caffe2_out[0].shape, x.shape)
|
|
|
|
def test_traced_ints(self):
|
|
A = 4
|
|
H = 10
|
|
W = 8
|
|
img_count = 3
|
|
|
|
# in this model, the constant propagation in JIT doesn't work
|
|
# so we have ListConstruct in the symbolic
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
self.conv = torch.nn.Conv2d(A, 4 * A, 1, stride=1)
|
|
|
|
def forward(self, feature, im_info, anchors):
|
|
bbox_deltas = self.conv(feature)
|
|
a, b = torch.ops._caffe2.GenerateProposals(
|
|
feature, bbox_deltas, im_info, anchors,
|
|
2.0, 6000, 300, 0.7, 16, True, -90, 90, 1.0, True,
|
|
)
|
|
output = torch.ops._caffe2.RoIAlign(
|
|
feature, a,
|
|
order="NCHW",
|
|
spatial_scale=1.0,
|
|
pooled_h=3,
|
|
pooled_w=3,
|
|
sampling_ratio=0,
|
|
aligned=False,
|
|
)
|
|
return output
|
|
|
|
feature = torch.Tensor(img_count, A, H, W)
|
|
im_info = torch.ones(img_count, 3, dtype=torch.float32)
|
|
anchors = torch.ones(A, 4, dtype=torch.float32)
|
|
inputs = (feature, im_info, anchors)
|
|
|
|
model = MyModel()
|
|
with torch.no_grad():
|
|
self.run_model_test(MyModel(), train=False, input=inputs, batch_size=BATCH_SIZE)
|
|
|
|
def test_c2_roi_align(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, feature, rois):
|
|
roi_feature = torch.ops._caffe2.RoIAlign(
|
|
feature, rois, order="NCHW", spatial_scale=1.0,
|
|
pooled_h=3, pooled_w=3, sampling_ratio=3, aligned=False,
|
|
)
|
|
return roi_feature
|
|
|
|
def rand_roi(N, C, H, W):
|
|
return [
|
|
float(int(N * np.random.rand())),
|
|
0.5 * np.random.rand() * W,
|
|
0.5 * np.random.rand() * H,
|
|
(0.5 + 0.5 * np.random.rand()) * W,
|
|
(0.5 + 0.5 * np.random.rand()) * H,
|
|
]
|
|
|
|
N, C, H, W = 1, 4, 10, 8
|
|
feature = torch.randn(N, C, H, W)
|
|
rois = torch.tensor([rand_roi(N, C, H, W) for _ in range(10)])
|
|
inputs = (feature, rois)
|
|
self.run_model_test(MyModel(), train=False, input=inputs, batch_size=3)
|
|
|
|
def test_c2_generate_proposals(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, scores, bbox_deltas, im_info, anchors):
|
|
a, b = torch.ops._caffe2.GenerateProposals(
|
|
scores, bbox_deltas, im_info, anchors,
|
|
2.0, 6000, 300, 0.7, 16, True, -90, 90, 1.0, True,
|
|
)
|
|
return a, b
|
|
|
|
A = 4
|
|
H = 10
|
|
W = 8
|
|
img_count = 3
|
|
scores = torch.ones(img_count, A, H, W, dtype=torch.float32)
|
|
bbox_deltas = torch.linspace(0, 10, steps=img_count * 4 * A * H * W,
|
|
dtype=torch.float32)
|
|
bbox_deltas = bbox_deltas.view(img_count, 4 * A, H, W)
|
|
im_info = torch.ones(img_count, 3, dtype=torch.float32)
|
|
anchors = torch.ones(A, 4, dtype=torch.float32)
|
|
inputs = (scores, bbox_deltas, im_info, anchors)
|
|
self.run_model_test(MyModel(), train=False, input=inputs, batch_size=3)
|
|
|
|
def test_c2_bbox_transform(self):
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, rois, deltas, im_info):
|
|
a, b = torch.ops._caffe2.BBoxTransform(
|
|
rois,
|
|
deltas,
|
|
im_info,
|
|
weights=[1., 1., 1., 1.],
|
|
apply_scale=False,
|
|
rotated=True,
|
|
angle_bound_on=True,
|
|
angle_bound_lo=-90,
|
|
angle_bound_hi=90,
|
|
clip_angle_thresh=0.5,
|
|
legacy_plus_one=True,
|
|
)
|
|
return a, b
|
|
|
|
roi_counts = [0, 2, 3, 4, 5]
|
|
batch_size = len(roi_counts)
|
|
total_rois = sum(roi_counts)
|
|
im_dims = np.random.randint(100, 600, batch_size)
|
|
rois = generate_rois_rotated(roi_counts, im_dims)
|
|
box_dim = 5
|
|
num_classes = 7
|
|
deltas = np.random.randn(total_rois, box_dim * num_classes).astype(np.float32)
|
|
im_info = np.zeros((batch_size, 3)).astype(np.float32)
|
|
im_info[:, 0] = im_dims
|
|
im_info[:, 1] = im_dims
|
|
im_info[:, 2] = 1.0
|
|
im_info = torch.zeros((batch_size, 3))
|
|
inputs = (torch.tensor(rois), torch.tensor(deltas), torch.tensor(im_info))
|
|
self.run_model_test(MyModel(), train=False, input=inputs, batch_size=3, use_gpu=False)
|
|
|
|
# BoxWithNMSLimits has requirements for the inputs, so randomly generated inputs
|
|
# in Caffe2BackendTestEmbed doesn't work with this op.
|
|
@skipIfEmbed
|
|
def test_c2_box_with_nms_limits(self):
|
|
roi_counts = [0, 2, 3, 4, 5]
|
|
num_classes = 7
|
|
rotated = False
|
|
angle_bound_on = True
|
|
clip_angle_thresh = 0.5
|
|
rois, deltas, im_info = create_bbox_transform_inputs(
|
|
roi_counts, num_classes, rotated
|
|
)
|
|
pred_bbox, batch_splits = [
|
|
t.detach().numpy()
|
|
for t in torch.ops._caffe2.BBoxTransform(
|
|
torch.tensor(rois),
|
|
torch.tensor(deltas),
|
|
torch.tensor(im_info),
|
|
[1.0, 1.0, 1.0, 1.0],
|
|
False,
|
|
rotated,
|
|
angle_bound_on,
|
|
-90,
|
|
90,
|
|
clip_angle_thresh,
|
|
legacy_plus_one=True,
|
|
)
|
|
]
|
|
class_prob = np.random.randn(sum(roi_counts), num_classes).astype(np.float32)
|
|
score_thresh = 0.5
|
|
nms_thresh = 0.5
|
|
topk_per_image = int(sum(roi_counts) / 2)
|
|
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, class_prob, pred_bbox, batch_splits):
|
|
a, b, c, d, e, f = torch.ops._caffe2.BoxWithNMSLimit(
|
|
class_prob,
|
|
pred_bbox,
|
|
batch_splits,
|
|
score_thresh=score_thresh,
|
|
nms=nms_thresh,
|
|
detections_per_im=topk_per_image,
|
|
soft_nms_enabled=False,
|
|
soft_nms_method="linear",
|
|
soft_nms_sigma=0.5,
|
|
soft_nms_min_score_thres=0.001,
|
|
rotated=rotated,
|
|
cls_agnostic_bbox_reg=False,
|
|
input_boxes_include_bg_cls=True,
|
|
output_classes_include_bg_cls=True,
|
|
legacy_plus_one=True,
|
|
)
|
|
return a, b, c, d, e, f
|
|
|
|
inputs = (torch.tensor(class_prob), torch.tensor(pred_bbox), torch.tensor(batch_splits))
|
|
self.run_model_test(MyModel(), train=False, input=inputs, batch_size=3, use_gpu=False)
|
|
|
|
def test_c2_inference_lstm(self):
|
|
num_layers = 4
|
|
seq_lens = 6
|
|
emb_lens = 10
|
|
has_bias = True
|
|
batch_first = True
|
|
is_bidirectional = True
|
|
|
|
class MyModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyModel, self).__init__()
|
|
|
|
def forward(self, lstm_in):
|
|
a, b, c = torch.ops._caffe2.InferenceLSTM(
|
|
lstm_in, num_layers, has_bias, batch_first, is_bidirectional
|
|
)
|
|
return a, b, c
|
|
|
|
num_directions = 2
|
|
bsz = 5
|
|
hidden_size = 7
|
|
hx = np.zeros((num_layers * num_directions, bsz, hidden_size), dtype=np.float32)
|
|
inputs = np.random.randn(bsz, seq_lens, emb_lens).astype(np.float32)
|
|
torch_lstm = torch.nn.LSTM(
|
|
emb_lens,
|
|
hidden_size,
|
|
batch_first=batch_first,
|
|
bidirectional=is_bidirectional,
|
|
bias=has_bias,
|
|
num_layers=num_layers,
|
|
)
|
|
lstm_in = [
|
|
torch.from_numpy(inputs),
|
|
torch.from_numpy(hx),
|
|
torch.from_numpy(hx),
|
|
] + [param.detach() for param in torch_lstm._flat_weights]
|
|
|
|
self.run_model_test(MyModel(), train=False, input=lstm_in, batch_size=3, use_gpu=False)
|
|
|
|
def test_tuple_input_output(self):
|
|
class TupleModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, a: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
return a
|
|
|
|
x = (torch.randn(3, 4), torch.randn(4, 3))
|
|
self.run_model_test(TupleModel(), train=False, input=(x,), batch_size=BATCH_SIZE,
|
|
example_outputs=(x,))
|
|
|
|
def test_nested_tuple_input_output(self):
|
|
class NestedTupleModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, a: torch.Tensor, b: Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]) -> torch.Tensor:
|
|
return a + b[0] + b[1][0] + b[1][1]
|
|
|
|
x = torch.randn(4, 5)
|
|
y = (torch.randn(4, 5), (torch.randn(4, 5), torch.randn(4, 5)))
|
|
self.run_model_test(NestedTupleModel(), train=False, input=(x, y), batch_size=BATCH_SIZE,
|
|
example_outputs=x + y[0] + y[1][0] + y[1][1])
|
|
|
|
def test_topk(self):
|
|
class TopKModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.topk(input, 3)
|
|
|
|
x = torch.arange(1., 6.)
|
|
self.run_model_test(TopKModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_topk_script(self):
|
|
class TopKModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, input):
|
|
return torch.topk(input, 3, dim=0)
|
|
|
|
x = torch.randn(4, 3, requires_grad=True)
|
|
self.run_model_test(TopKModel(), train=False, input=(x,), batch_size=BATCH_SIZE, example_outputs=torch.topk(x, 3, dim=0))
|
|
|
|
def test_floor(self):
|
|
class FloorModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.floor(input)
|
|
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_model_test(FloorModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_ceil(self):
|
|
class CeilModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.ceil(input)
|
|
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
self.run_model_test(CeilModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test__dim_arange(self):
|
|
class DimArange(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch._dim_arange(input, 1)
|
|
|
|
x = torch.ones(5, 6)
|
|
self.run_model_test(DimArange(), train=False, input=x, batch_size=BATCH_SIZE,
|
|
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_arange_end(self):
|
|
class ArangeScript(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, a):
|
|
return torch.arange(a.size(0), dtype=torch.float).view(-1, 1) + a
|
|
|
|
x = torch.randn(3, 4, requires_grad=True)
|
|
outputs = ArangeScript()(x)
|
|
self.run_model_test(ArangeScript(), train=False, input=(x,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
class ArangeModel(torch.nn.Module):
|
|
def forward(self, a):
|
|
return torch.arange(a.size(0), dtype=torch.float).view(-1, 1) + a
|
|
|
|
self.run_model_test(ArangeModel(), train=False, input=(x,), batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_arange_start_end(self):
|
|
class ArangeScript(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, a):
|
|
return torch.arange(2, a.size(0) + 2, dtype=torch.float).view(-1, 1) + a
|
|
|
|
x = torch.randn(3, 4, requires_grad=True)
|
|
outputs = ArangeScript()(x)
|
|
self.run_model_test(ArangeScript(), train=False, input=(x,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
class ArangeModel(torch.nn.Module):
|
|
def forward(self, a):
|
|
return torch.arange(2, a.size(0) + 2, dtype=torch.float).view(-1, 1) + a
|
|
|
|
self.run_model_test(ArangeModel(), train=False, input=(x,), batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_arange_start_end_step(self):
|
|
class ArangeScript(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, a):
|
|
return torch.arange(2, a.size(0) * a.size(1) + 2, a.size(1), dtype=torch.float).view(-1, 1) + a
|
|
|
|
x = torch.randn(3, 4, requires_grad=True)
|
|
outputs = ArangeScript()(x)
|
|
self.run_model_test(ArangeScript(), train=False, input=(x,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
class ArangeModel(torch.nn.Module):
|
|
def forward(self, a):
|
|
return torch.arange(2, a.size(0) * a.size(1) + 2, a.size(1), dtype=torch.float).view(-1, 1) + a
|
|
|
|
self.run_model_test(ArangeModel(), train=False, input=(x,), batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_size(self):
|
|
class SizeModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.arange(input.size(0)), torch.arange(input.size(-1))
|
|
|
|
x = torch.randn(5, 3, 2)
|
|
self.run_model_test(SizeModel(), train=False, input=(x,), batch_size=BATCH_SIZE)
|
|
|
|
def test_log2(self):
|
|
class Log2Model(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.log2(input)
|
|
|
|
x = torch.empty(BATCH_SIZE, 10, 10).uniform_(4, 9)
|
|
self.run_model_test(Log2Model(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test__sample_dirichlet(self):
|
|
class DirichletModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch._sample_dirichlet(input)
|
|
|
|
x = torch.randn(2, 3, 4, requires_grad=False)
|
|
model = DirichletModel()
|
|
onnxir, _ = do_export(model, x, keep_initializers_as_inputs=True,
|
|
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
|
|
onnx_model = onnx.ModelProto.FromString(onnxir)
|
|
prepared = c2.prepare(onnx_model)
|
|
caffe2_out = prepared.run(inputs=[x.cpu().numpy()])
|
|
self.assertEqual(caffe2_out[0].shape, x.shape)
|
|
|
|
def test__standard_gamma(self):
|
|
class GammaModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch._standard_gamma(input)
|
|
|
|
x = torch.randn(2, 3, 4, requires_grad=False)
|
|
model = GammaModel()
|
|
onnxir, _ = do_export(model, x, keep_initializers_as_inputs=True,
|
|
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
|
|
onnx_model = onnx.ModelProto.FromString(onnxir)
|
|
prepared = c2.prepare(onnx_model)
|
|
caffe2_out = prepared.run(inputs=[x.cpu().numpy()])
|
|
self.assertEqual(caffe2_out[0].shape, x.shape)
|
|
|
|
# The order of returned indices from Multinomial is undefined, so randomly generated inputs
|
|
# in Caffe2BackendTestEmbed doesn't work with this op.
|
|
@skipIfEmbed
|
|
def test_multinomial(self):
|
|
class Multinomial(torch.nn.Module):
|
|
def forward(self, weight):
|
|
return torch.multinomial(weight, 3, replacement=True)
|
|
|
|
class MultinomialNoReplacement(torch.nn.Module):
|
|
def forward(self, weight):
|
|
return torch.multinomial(weight, 1)
|
|
|
|
weight = torch.tensor([[0, 10, 0, 0], [0, 0, 100, 0]], dtype=torch.float)
|
|
self.run_model_test(Multinomial(), train=False, input=weight, batch_size=BATCH_SIZE)
|
|
self.run_model_test(MultinomialNoReplacement(), train=False, input=weight, batch_size=BATCH_SIZE)
|
|
|
|
def test_prim_shape(self):
|
|
x = torch.randn(4, 5, requires_grad=True)
|
|
|
|
@torch.jit.script
|
|
def view_by_prim_shape(x):
|
|
return x.view(x.shape)
|
|
|
|
class PrimShapeModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return view_by_prim_shape(input)
|
|
self.run_model_test(PrimShapeModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
def test_and(self):
|
|
class AndModel(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x & y
|
|
|
|
x = torch.randint(0, 1, (3, 5))
|
|
y = torch.randint(0, 1, (3, 5))
|
|
self.run_model_test(AndModel(), train=False, input=(x, y), batch_size=BATCH_SIZE)
|
|
|
|
def test_or(self):
|
|
class OrModel(torch.nn.Module):
|
|
def forward(self, x, y):
|
|
return x | y
|
|
|
|
x = torch.randint(0, 1, (3, 5))
|
|
y = torch.randint(0, 1, (3, 5))
|
|
self.run_model_test(OrModel(), train=False, input=(x, y), batch_size=BATCH_SIZE)
|
|
|
|
def test_dropout(self):
|
|
class DropoutModel(torch.nn.Module):
|
|
def __init__(self):
|
|
super(DropoutModel, self).__init__()
|
|
self.dropout = torch.nn.Dropout(0.5)
|
|
|
|
def forward(self, x):
|
|
return self.dropout(x)
|
|
|
|
x = torch.randn(1, 2, 3)
|
|
self.run_model_test(DropoutModel(), train=False, input=x, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_while(self):
|
|
class WhileModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
a = 0
|
|
while a < 4:
|
|
a += 1
|
|
return x + a
|
|
|
|
model = WhileModel()
|
|
inputs = torch.zeros(1, 2, 3, dtype=torch.long)
|
|
outputs = model(inputs)
|
|
self.run_model_test(model, train=False, input=(inputs,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
def test_while_cond(self):
|
|
class WhileModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x, a):
|
|
b = (a < 4)
|
|
while b:
|
|
a += b.to(torch.long)
|
|
b = (a < 4)
|
|
return x + a
|
|
|
|
model = WhileModel()
|
|
x = torch.zeros(1, 2, 3, dtype=torch.long)
|
|
a = torch.tensor([0], dtype=torch.long)
|
|
outputs = model(x, a)
|
|
self.run_model_test(model, train=False, input=(x, a), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
def test_loop(self):
|
|
class LoopModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
for i in range(5):
|
|
x = x + i
|
|
return x
|
|
|
|
model = LoopModel()
|
|
inputs = torch.zeros(1, 2, 3, dtype=torch.long)
|
|
outputs = model(inputs)
|
|
self.run_model_test(model, train=False, input=(inputs,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
def test_dynamic_loop(self):
|
|
class LoopModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
for i in range(x.size(2)):
|
|
x = x + i
|
|
return x
|
|
|
|
model = LoopModel()
|
|
inputs = torch.zeros(1, 2, 3, dtype=torch.long)
|
|
outputs = model(inputs)
|
|
self.run_model_test(model, train=False, input=(inputs,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_nested_loops(self):
|
|
class NestedLoopsModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
for i in range(5):
|
|
a = 0
|
|
while a < 4:
|
|
a += 1
|
|
for j in range(a):
|
|
x = x + j
|
|
x = x + a
|
|
return x
|
|
|
|
model = NestedLoopsModel()
|
|
inputs = torch.zeros(1, 2, 3, dtype=torch.long)
|
|
outputs = model(inputs)
|
|
self.run_model_test(model, train=False, input=(inputs,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
def test_select(self):
|
|
class SelectModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.select(x, 0, 1)
|
|
|
|
model = SelectModel()
|
|
inputs = torch.randn(3, 2, 1)
|
|
self.run_model_test(model, train=False, input=(inputs, ), batch_size=BATCH_SIZE)
|
|
|
|
def test_std(self):
|
|
class StandardDeviation(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.std(input, unbiased=False)
|
|
|
|
model = StandardDeviation()
|
|
inputs = torch.randn(2, 3, 4)
|
|
outputs = model(inputs)
|
|
self.run_model_test(model, train=False, input=(inputs,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
def test_std_along_dims(self):
|
|
class StandardDeviationAlongDims(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.std(input, dim=(0, 1), unbiased=False, keepdim=False)
|
|
|
|
model = StandardDeviationAlongDims()
|
|
inputs = torch.randn(2, 3, 4)
|
|
outputs = model(inputs)
|
|
self.run_model_test(model, train=False, input=(inputs,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_masked_fill(self):
|
|
class MaskedFillModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
mask = torch.tensor([[0, 0, 1], [1, 1, 0]], dtype=torch.uint8)
|
|
return x.masked_fill(mask, 2)
|
|
|
|
x = torch.zeros(4, 2, 3, requires_grad=True)
|
|
self.run_model_test(MaskedFillModel(), input=(x, ), train=False, batch_size=BATCH_SIZE)
|
|
|
|
class MaskedFillModel2(torch.nn.Module):
|
|
def forward(self, x):
|
|
return x.masked_fill(x > 3, -1)
|
|
|
|
x = torch.arange(16).view(2, 2, 4).to(torch.float32)
|
|
self.run_model_test(MaskedFillModel2(), input=(x, ), train=False, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(8)
|
|
def test_meshgrid(self):
|
|
class MeshgridModel(torch.nn.Module):
|
|
def forward(self, x, y, z):
|
|
return torch.meshgrid(x, y, z)
|
|
|
|
x = torch.ones(3, requires_grad=True)
|
|
y = torch.zeros(4, requires_grad=True)
|
|
z = torch.ones(5, requires_grad=True)
|
|
model = MeshgridModel()
|
|
outputs = model(x, y, z)
|
|
self.run_model_test(model, train=False, input=(x, y, z), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
def test_remainder(self):
|
|
class RemainderModel(torch.nn.Module):
|
|
def forward(self, input, other):
|
|
return torch.remainder(input, other)
|
|
|
|
x = torch.randn(4, 2, 3)
|
|
y = torch.randn(1, 2, 1)
|
|
model = RemainderModel()
|
|
outputs = model(x, y)
|
|
self.run_model_test(model, train=False, input=(x, y), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
def test_remainder_scalar(self):
|
|
class RemainderModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
return torch.remainder(input, 2.55)
|
|
|
|
inputs = torch.randint(10, (2, 3))
|
|
model = RemainderModel()
|
|
outputs = model(inputs)
|
|
self.run_model_test(model, train=False, input=(inputs,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
def test_baddbmm(self):
|
|
class MyModule(torch.nn.Module):
|
|
def forward(self, input, batch1, batch2):
|
|
return torch.baddbmm(input, batch1, batch2, alpha=torch.tensor(5), beta=3.5)
|
|
x = torch.randn(10, 3, 5)
|
|
batch1 = torch.randn(10, 3, 4)
|
|
batch2 = torch.randn(10, 4, 5)
|
|
self.run_model_test(MyModule(), input=(x, batch1, batch2), train=False, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_gelu(self):
|
|
class GeluModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
return torch.nn.functional.gelu(x)
|
|
|
|
model = GeluModel()
|
|
inputs = torch.randn(2, 4, 5, 6, requires_grad=True)
|
|
outputs = model(inputs)
|
|
self.run_model_test(model, train=False, input=(inputs,), batch_size=BATCH_SIZE,
|
|
example_outputs=(outputs,))
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_index_fill(self):
|
|
class IndexFillModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
index = torch.tensor([2, 0])
|
|
return input.index_fill(2, index, -1)
|
|
|
|
x = torch.randn(3, 4, 5, requires_grad=True)
|
|
self.run_model_test(IndexFillModel(), input=(x, ), train=False, batch_size=BATCH_SIZE)
|
|
|
|
@skipIfUnsupportedMinOpsetVersion(9)
|
|
def test_index_copy(self):
|
|
class IndexCopyModel(torch.nn.Module):
|
|
def forward(self, input):
|
|
index = torch.tensor([2, 0])
|
|
source = torch.ones(3, 2, 5)
|
|
return input.index_copy(1, index, source)
|
|
|
|
x = torch.randn(3, 4, 5, requires_grad=True)
|
|
self.run_model_test(IndexCopyModel(), input=(x, ), train=False, batch_size=BATCH_SIZE)
|
|
|
|
# a bit of metaprogramming to set up all the rnn tests
|
|
|
|
|
|
def make_test(name, base, layer, bidirectional, initial_state,
|
|
variable_length, dropout,
|
|
**extra_kwargs):
|
|
test_name = str('_'.join([
|
|
'test', name, layer[1],
|
|
bidirectional[1], initial_state[1],
|
|
variable_length[1], dropout[1]
|
|
]))
|
|
|
|
@skipIfUnsupportedOpsetVersion([10])
|
|
@skipIfUnsupportedMinOpsetVersion(8)
|
|
def f(self):
|
|
self._dispatch_rnn_test(
|
|
base,
|
|
layers=layer[0],
|
|
bidirectional=bidirectional[0],
|
|
initial_state=initial_state[0],
|
|
packed_sequence=variable_length[0],
|
|
dropout=dropout[0],
|
|
**extra_kwargs)
|
|
|
|
f.__name__ = test_name
|
|
setattr(TestCaffe2Backend_opset9, f.__name__, f)
|
|
|
|
|
|
def setup_rnn_tests():
|
|
layers_opts = [
|
|
(1, 'unilayer'),
|
|
(3, 'trilayer')
|
|
]
|
|
bidirectional_opts = [
|
|
(False, 'forward'),
|
|
(True, 'bidirectional')
|
|
]
|
|
initial_state_opts = [
|
|
(True, 'with_initial_state'),
|
|
(False, 'no_initial_state')
|
|
]
|
|
variable_length_opts = [
|
|
(0, 'without_sequence_lengths'),
|
|
(1, 'with_variable_length_sequences'),
|
|
(2, 'with_batch_first_sequence_lengths')
|
|
]
|
|
dropout_opts = [
|
|
(0.2, 'with_dropout'),
|
|
(0.0, 'without_dropout')
|
|
]
|
|
test_count = 0
|
|
for (layer, bidirectional, initial_state, variable_length, dropout) in \
|
|
itertools.product(
|
|
layers_opts,
|
|
bidirectional_opts,
|
|
initial_state_opts,
|
|
variable_length_opts,
|
|
dropout_opts,
|
|
):
|
|
|
|
for base, name, extra_kwargs in (
|
|
('elman', 'elman_relu', {'nonlinearity': u'relu'}),
|
|
('elman', 'elman_tanh', {'nonlinearity': u'tanh'}),
|
|
('lstm', 'lstm', {}),
|
|
('gru', 'gru', {})
|
|
):
|
|
make_test(name, base, layer, bidirectional, initial_state,
|
|
variable_length, dropout,
|
|
**extra_kwargs)
|
|
test_count += 1
|
|
|
|
# sanity check that a representative example does exist
|
|
TestCaffe2Backend_opset9.test_gru_trilayer_forward_with_initial_state_without_sequence_lengths_with_dropout
|
|
|
|
# make sure no one accidentally disables all the tests without
|
|
# noticing
|
|
assert test_count == 192, test_count
|
|
setup_rnn_tests()
|
|
|
|
# add the same test suite as above, but switch embed_params=False
|
|
# to embed_params=True
|
|
TestCaffe2BackendEmbed_opset9 = type(str("TestCaffe2BackendEmbed_opset9"),
|
|
(unittest.TestCase,),
|
|
dict(TestCaffe2Backend_opset9.__dict__, embed_params=True))
|
|
|
|
# opset 7 tests
|
|
TestCaffe2Backend_opset7 = type(str("TestCaffe2Backend_opset7"),
|
|
(unittest.TestCase,),
|
|
dict(TestCaffe2Backend_opset9.__dict__, opset_version=7))
|
|
TestCaffe2BackendEmbed_opset7 = type(str("TestCaffe2BackendEmbed_opset7"),
|
|
(unittest.TestCase,),
|
|
dict(TestCaffe2Backend_opset9.__dict__,
|
|
embed_params=True, opset_version=7))
|
|
|
|
# opset 8 tests
|
|
TestCaffe2Backend_opset8 = type(str("TestCaffe2Backend_opset8"),
|
|
(unittest.TestCase,),
|
|
dict(TestCaffe2Backend_opset9.__dict__, opset_version=8))
|
|
TestCaffe2BackendEmbed_opset8 = type(str("TestCaffe2BackendEmbed_opset8"),
|
|
(unittest.TestCase,),
|
|
dict(TestCaffe2Backend_opset9.__dict__,
|
|
embed_params=True, opset_version=8))
|
|
|
|
# opset 10 tests
|
|
TestCaffe2Backend_opset10 = type(str("TestCaffe2Backend_opset10"),
|
|
(unittest.TestCase,),
|
|
dict(TestCaffe2Backend_opset9.__dict__, opset_version=10))
|
|
|
|
TestCaffe2BackendEmbed_opset10 = type(str("TestCaffe2BackendEmbed_opset10"),
|
|
(unittest.TestCase,),
|
|
dict(TestCaffe2Backend_opset9.__dict__,
|
|
embed_params=True, opset_version=10))
|
|
|
|
# add the same test suite as above, but switch embed_params=False
|
|
# to embed_params=True
|
|
TestCaffe2BackendEmbed_opset9_new_jit_API = type(str("TestCaffe2BackendEmbed_opset9_new_jit_API"),
|
|
(unittest.TestCase,),
|
|
dict(TestCaffe2Backend_opset9.__dict__, embed_params=True))
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|