mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/57183 Previously, if it was unable to support matching against a type, it would throw an error. However, this exposes the user to arbitrary Torchscript schemas, which may or may not be problematic. Although we may support these in the future, for now we just return False (which will simply eliminate that schema from the candidates). Test Plan: T89661626 and T89664016 Reviewed By: spaugh, khabinov Differential Revision: D28072018 fbshipit-source-id: 83017d1e96d19912163edc74a5e43b2816783218
348 lines
15 KiB
Python
348 lines
15 KiB
Python
import torch
|
|
import inspect
|
|
import numbers
|
|
import typing
|
|
import enum
|
|
import warnings
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, NamedTuple, cast
|
|
from torch._jit_internal import boolean_dispatched
|
|
|
|
class ArgsKwargsPair(NamedTuple):
|
|
"""
|
|
Simple named tuple for wrapping args/kwargs pairs.
|
|
"""
|
|
args: Tuple[Any, ...]
|
|
kwargs: Dict[str, Any]
|
|
|
|
_manual_overrides : Dict[Callable, List[inspect.Signature]] = {}
|
|
|
|
def _nonzero_schemas():
|
|
signatures = []
|
|
|
|
def nonzero(self):
|
|
pass
|
|
signatures.append(inspect.signature(nonzero))
|
|
|
|
def nonzero(self, *, as_tuple : bool): # type: ignore[no-redef]
|
|
pass
|
|
signatures.append(inspect.signature(nonzero))
|
|
|
|
return signatures
|
|
|
|
_manual_overrides[torch.nonzero] = _nonzero_schemas()
|
|
|
|
class _FakeGlobalNamespace:
|
|
def __getattr__(self, name):
|
|
if name == 'torch':
|
|
return torch
|
|
raise RuntimeError('Expected a torch namespace lookup')
|
|
|
|
_type_eval_globals = {'Tensor' : torch.Tensor, 'Device' : torch.device, 'Layout' : torch.layout,
|
|
'number' : numbers.Number, 'Future' : torch.jit.Future,
|
|
'AnyEnumType' : enum.Enum, 'QScheme' : torch.qscheme,
|
|
'__torch__': _FakeGlobalNamespace(), 'NoneType': type(None),
|
|
't': typing.TypeVar('t')}
|
|
for k in dir(typing):
|
|
_type_eval_globals[k] = getattr(typing, k)
|
|
|
|
def _torchscript_type_to_python_type(ts_type : 'torch._C.JitType') -> Any:
|
|
"""
|
|
Convert a TorchScript type to a Python type (including subtypes) via
|
|
eval'ing the annotation_str. _type_eval_globals sets up expressions
|
|
like "List" and "Future" to map to actual types (typing.List and jit.Future)
|
|
"""
|
|
return eval(ts_type.annotation_str, _type_eval_globals)
|
|
|
|
def _torchscript_schema_to_signature(ts_schema : torch._C.FunctionSchema) -> inspect.Signature:
|
|
parameters : List[inspect.Parameter] = []
|
|
for arg in ts_schema.arguments:
|
|
arg_type = _torchscript_type_to_python_type(arg.type)
|
|
default = arg.default_value if arg.has_default_value() else inspect.Parameter.empty
|
|
# TODO: Figure out if this is safe. It seems like when generating the type signatures for
|
|
# PythonArgParser, we emit signatures with `input` instead of `self` as the first tensor
|
|
# argument name. Downstream, if someone converts that positional argument to a keyword
|
|
# argument, the name mismatch will break things, so here we're going to normalize the
|
|
# name to "input"
|
|
name = arg.name if arg.name != 'self' else 'input'
|
|
kind = inspect.Parameter.KEYWORD_ONLY if arg.kwarg_only else inspect.Parameter.POSITIONAL_OR_KEYWORD
|
|
parameters.append(inspect.Parameter(name=name, kind=kind, default=default, annotation=arg_type))
|
|
return_types = [_torchscript_type_to_python_type(ret.type) for ret in ts_schema.returns]
|
|
if len(return_types) == 0:
|
|
return_type = None
|
|
elif len(return_types) == 1:
|
|
return_type = return_types[0]
|
|
else:
|
|
return_type = tuple(return_types)
|
|
|
|
return inspect.Signature(parameters, return_annotation=return_type)
|
|
|
|
def get_signature_for_torch_op(op : Callable) -> Optional[List[inspect.Signature]]:
|
|
"""
|
|
Given an operator on the `torch` namespace, return a list of `inspect.Signature`
|
|
objects corresponding to the overloads of that op.. May return `None` if a signature
|
|
could not be retrieved.
|
|
|
|
Args:
|
|
op (Callable): An operator on the `torch` namespace to look up a signature for
|
|
|
|
Returns:
|
|
Optional[List[inspect.Signature]]: A list of signatures for the overloads of this
|
|
operator, or None if the operator signatures could not be retrieved.
|
|
"""
|
|
override = _manual_overrides.get(op)
|
|
if override:
|
|
return override
|
|
|
|
aten_fn = torch.jit._builtins._find_builtin(op)
|
|
|
|
if aten_fn is None:
|
|
return None
|
|
|
|
schemas = torch._C._jit_get_schemas_for_operator(aten_fn)
|
|
signatures = [_torchscript_schema_to_signature(schema) for schema in schemas]
|
|
|
|
return signatures
|
|
|
|
def create_type_hint(x):
|
|
if isinstance(x, list) or isinstance(x, tuple):
|
|
# todo(chilli): Figure out the right way for mypy to handle this
|
|
if isinstance(x, list):
|
|
def ret_type(x):
|
|
return List[x] # type: ignore[valid-type]
|
|
else:
|
|
def ret_type(x):
|
|
return Tuple[x, ...]
|
|
if len(x) == 0:
|
|
return ret_type(Any)
|
|
base_type = x[0]
|
|
for t in x:
|
|
if issubclass(t, base_type):
|
|
continue
|
|
elif issubclass(base_type, t):
|
|
base_type = t
|
|
else:
|
|
return ret_type(Any)
|
|
return ret_type(base_type)
|
|
return x
|
|
|
|
def type_matches(signature_type : Any, argument_type : Any):
|
|
sig_origin_type = getattr(signature_type, '__origin__', signature_type)
|
|
|
|
if signature_type is argument_type:
|
|
return True
|
|
|
|
# Union types in signature. Given type needs to match one of the
|
|
# contained types in the Union
|
|
if sig_origin_type is typing.Union and signature_type != argument_type:
|
|
sig_contained = signature_type.__args__
|
|
return any(type_matches(c, argument_type) for c in sig_contained)
|
|
|
|
if signature_type is List[int] and argument_type is int:
|
|
# int can be promoted to List[int]
|
|
return True
|
|
|
|
if getattr(signature_type, '__origin__', None) in {list, List}:
|
|
sig_el_type = signature_type.__args__[0]
|
|
if not inspect.isclass(sig_el_type):
|
|
warnings.warn(
|
|
f"Does not support nested parametric types, got {signature_type}. Please file a bug.")
|
|
return False
|
|
if getattr(argument_type, '__origin__', None) in {list, List}:
|
|
return issubclass(argument_type.__args__[0], sig_el_type)
|
|
|
|
def is_homogeneous_tuple(t):
|
|
if not getattr(t, '__origin__', None) in {tuple, Tuple}:
|
|
return False
|
|
contained = t.__args__
|
|
if t.__args__ == ((),): # Tuple[()].__args__ == ((),) for some reason
|
|
return True
|
|
return all((c is Ellipsis) or issubclass(c, sig_el_type) for c in contained)
|
|
|
|
# Tuple[T] is accepted for List[T] parameters
|
|
return is_homogeneous_tuple(argument_type)
|
|
|
|
# Dtype is an int in schemas
|
|
if signature_type is int and argument_type is torch.dtype:
|
|
return True
|
|
|
|
if signature_type is numbers.Number and argument_type in {int, float}:
|
|
return True
|
|
if inspect.isclass(argument_type) and inspect.isclass(signature_type):
|
|
return issubclass(argument_type, signature_type)
|
|
|
|
return False
|
|
|
|
def normalize_function(
|
|
target: Callable, args: Tuple[Any], kwargs : Optional[Dict[str, Any]] = None, arg_types : Optional[Tuple[Any]] = None,
|
|
kwarg_types : Optional[Dict[str, Any]] = None,
|
|
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
|
"""
|
|
Returns normalized arguments to PyTorch functions. This means that
|
|
`args/kwargs` will be matched up to the functional's
|
|
signature and return exclusively kwargs in positional order if
|
|
`normalize_to_only_use_kwargs` is True.
|
|
Also populates default values. Does not support positional-only
|
|
parameters or varargs parameters (*args, **kwargs). Does not support modules.
|
|
|
|
May require `arg_types` and `kwarg_types` in order to disambiguate overloads.
|
|
|
|
Args:
|
|
target (Callable): Function that we are normalizing
|
|
args (Tuple[Any]): Tuple of args to the function
|
|
kwargs (Optional[Dict[str, Any]]): Dict of kwargs to the function
|
|
arg_types (Optional[Tuple[Any]]): Tuple of arg types for the args
|
|
kwarg_types (Optional[Dict[str, Any]]): Dict of arg types for the kwargs
|
|
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
|
|
|
Returns:
|
|
|
|
Returns normalized_args_and_kwargs, or `None` if not successful.
|
|
"""
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
new_args_and_kwargs = None
|
|
if target in boolean_dispatched or target.__module__ in ['torch.nn.functional', 'torch.functional']:
|
|
target_for_analysis = target
|
|
if target in boolean_dispatched:
|
|
# HACK: `boolean_dispatch` as used in `torch.nn.functional` makes it so that we have
|
|
# a 2-way dispatch based on a boolean value. Here we check that the `true` and `false`
|
|
# branches of the dispatch have exactly the same signature. If they do, use the `true`
|
|
# branch signature for analysis. Otherwise, leave this un-normalized
|
|
assert not isinstance(target, str)
|
|
dispatched = boolean_dispatched[target]
|
|
if_true, if_false = dispatched['if_true'], dispatched['if_false']
|
|
if inspect.signature(if_true).parameters != inspect.signature(if_false).parameters:
|
|
return None
|
|
target_for_analysis = if_true
|
|
|
|
assert callable(target_for_analysis)
|
|
sig = inspect.signature(inspect.unwrap(target_for_analysis))
|
|
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(sig, args, kwargs, normalize_to_only_use_kwargs)
|
|
else:
|
|
assert callable(target)
|
|
torch_op_schemas = get_signature_for_torch_op(target)
|
|
matched_schemas = []
|
|
if torch_op_schemas:
|
|
# Iterate through all of the schema until we find one that matches
|
|
# If one matches, populate `new_args_and_kwargs` with the new args/kwargs
|
|
# values. If none matches, `new_args_and_kwargs` will be None
|
|
for candidate_signature in torch_op_schemas:
|
|
try:
|
|
candidate_signature.bind(*args, **kwargs)
|
|
matched_schemas.append(candidate_signature)
|
|
except TypeError as e:
|
|
continue
|
|
|
|
if len(matched_schemas) == 0:
|
|
# Did not match any schema. Cannot normalize
|
|
pass
|
|
elif len(matched_schemas) == 1:
|
|
# Matched exactly one schema, unambiguous
|
|
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(matched_schemas[0], args, kwargs,
|
|
normalize_to_only_use_kwargs)
|
|
else:
|
|
if arg_types is not None or kwarg_types is not None:
|
|
arg_types = arg_types if arg_types else cast(Tuple[Any], ())
|
|
kwarg_types = kwarg_types if kwarg_types else {}
|
|
for candidate_signature in torch_op_schemas:
|
|
sig_matches = True
|
|
try:
|
|
bound_types = candidate_signature.bind(*arg_types, **kwarg_types)
|
|
for arg_name, arg_type in bound_types.arguments.items():
|
|
param = candidate_signature.parameters[arg_name]
|
|
sig_matches = sig_matches and type_matches(param.annotation, arg_type)
|
|
except TypeError as e:
|
|
sig_matches = False
|
|
if sig_matches:
|
|
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(candidate_signature, args, kwargs,
|
|
normalize_to_only_use_kwargs)
|
|
break
|
|
else:
|
|
# Matched more than one schema. In this situation, the caller must provide the types of
|
|
# the arguments of the overload they expect.
|
|
schema_printouts = '\n'.join(str(schema) for schema in matched_schemas)
|
|
raise RuntimeError(f'Tried to normalize arguments to {torch.typename(target)} but '
|
|
f'the schema match was ambiguous! Please provide argument types to '
|
|
f'the normalize_arguments() call. Available schemas:\n{schema_printouts}')
|
|
|
|
return new_args_and_kwargs
|
|
|
|
def normalize_module(
|
|
root: torch.nn.Module, target: str, args: Tuple[Any], kwargs : Optional[Dict[str, Any]] = None,
|
|
normalize_to_only_use_kwargs : bool = False) -> Optional[ArgsKwargsPair]:
|
|
"""
|
|
Returns normalized arguments to PyTorch modules. This means that
|
|
`args/kwargs` will be matched up to the functional's
|
|
signature and return exclusively kwargs in positional order if
|
|
`normalize_to_only_use_kwargs` is True.
|
|
Also populates default values. Does not support positional-only
|
|
parameters or varargs parameters (*args, **kwargs).
|
|
|
|
Args:
|
|
root (nn.Module): root module upon which we query modules
|
|
target (Callable): Function that we are normalizing
|
|
args (Tuple[Any]): Tuple of args to the function
|
|
kwargs (Optional[Dict[str, Any]]): Dict of kwargs to the function
|
|
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
|
|
|
Returns:
|
|
|
|
Returns normalized_args_and_kwargs, or `None` if not successful.
|
|
"""
|
|
try:
|
|
submod = root.get_submodule(target)
|
|
except AttributeError:
|
|
raise RuntimeError(f"Tried to normalize node with target {target} but root did not "
|
|
f"have that target!")
|
|
if hasattr(submod.__class__, '__name__'):
|
|
classname = submod.__class__.__name__
|
|
if getattr(torch.nn, classname, None) == submod.__class__:
|
|
sig = inspect.signature(inspect.unwrap(submod.forward))
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
new_args_and_kwargs = _args_kwargs_to_normalized_args_kwargs(sig, args, kwargs,
|
|
normalize_to_only_use_kwargs)
|
|
return new_args_and_kwargs
|
|
return None
|
|
|
|
def _args_kwargs_to_normalized_args_kwargs(sig : inspect.Signature, args : Tuple[Any, ...],
|
|
kwargs : Dict[str, Any],
|
|
normalize_to_only_use_kwargs : bool) -> Optional[ArgsKwargsPair]:
|
|
"""
|
|
Given a call target, args, and kwargs, return the arguments normalized into
|
|
an ArgsKwargsPair, or None if the type signature is not supported by
|
|
this normalization.
|
|
|
|
Args:
|
|
|
|
target (inspect.Signature): Signature object for the target
|
|
args (Tuple): Arguments that appear at the callsite for `target`
|
|
kwargs (Dict): Keyword arugments that appear at the callsite for `target`
|
|
normalize_to_only_use_kwargs (bool): Whether to normalize to only use kwargs.
|
|
|
|
Returns:
|
|
|
|
Optional[ArgsKwargsPair]: Normalized args and kwargs for `target`, or `None` if
|
|
this target is not supported.
|
|
"""
|
|
|
|
# Don't currently support positional-only
|
|
# or varargs (*args, **kwargs) signatures
|
|
supported_parameter_types = {
|
|
inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY}
|
|
if any(p.kind not in supported_parameter_types for p in sig.parameters.values()):
|
|
return None
|
|
|
|
bound_args = sig.bind(*args, **kwargs)
|
|
bound_args.apply_defaults()
|
|
|
|
new_kwargs : Dict[str, Any] = {}
|
|
new_args : List[Any] = []
|
|
for i, param in enumerate(sig.parameters):
|
|
if not normalize_to_only_use_kwargs and i < len(args):
|
|
new_args.append(bound_args.arguments[param])
|
|
else:
|
|
new_kwargs[param] = bound_args.arguments[param]
|
|
|
|
return ArgsKwargsPair(tuple(new_args), new_kwargs)
|