pytorch/torch/ao/quantization/fuser_method_mappings.py
Nikita Shulga 56511f859a Revert D33178977: [bc-breaking][quant][be] Refactor fuser_method to include is_qat argument
Test Plan: revert-hammer

Differential Revision:
D33178977 (ef501e8fed)

Original commit changeset: 0c1499c45526

Original Phabricator Diff: D33178977 (ef501e8fed)

fbshipit-source-id: f3912e210e8c588fdbdc9c3c5f4acf2aa8fe6678
(cherry picked from commit cd62183414)
2022-01-27 03:29:40 +00:00

204 lines
8.0 KiB
Python

import torch.nn as nn
import torch.nn.intrinsic as nni
from typing import Union, Callable, Tuple, Dict, Optional, Type
from torch.ao.quantization.utils import Pattern
from torch.ao.quantization.utils import get_combined_dict
def fuse_conv_bn(conv, bn):
r"""Given the conv and bn modules, fuses them and returns the fused module
Args:
conv: Module instance of type conv2d/conv3d
bn: Spatial BN instance that needs to be fused with the conv
Examples::
>>> m1 = nn.Conv2d(10, 20, 3)
>>> b1 = nn.BatchNorm2d(20)
>>> m2 = fuse_conv_bn(m1, b1)
"""
assert(conv.training == bn.training),\
"Conv and BN both must be in the same mode (train or eval)."
fused_module_class_map = {
nn.Conv1d: nni.ConvBn1d,
nn.Conv2d: nni.ConvBn2d,
nn.Conv3d: nni.ConvBn3d,
}
if conv.training:
assert bn.num_features == conv.out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
assert bn.affine, 'Only support fusing BatchNorm2d with affine set to True'
assert bn.track_running_stats, 'Only support fusing BatchNorm2d with tracking_running_stats set to True'
fused_module_class = fused_module_class_map.get((type(conv)), None)
if fused_module_class is not None:
return fused_module_class(conv, bn)
else:
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn)))
else:
return nn.utils.fuse_conv_bn_eval(conv, bn)
def fuse_conv_bn_relu(conv, bn, relu):
r"""Given the conv and bn modules, fuses them and returns the fused module
Args:
conv: Module instance of type conv2d/conv3d
bn: Spatial BN instance that needs to be fused with the conv
Examples::
>>> m1 = nn.Conv2d(10, 20, 3)
>>> b1 = nn.BatchNorm2d(20)
>>> r1 = nn.ReLU(inplace=False)
>>> m2 = fuse_conv_bn_relu(m1, b1, r1)
"""
assert(conv.training == bn.training == relu.training),\
"Conv and BN both must be in the same mode (train or eval)."
fused_module : Optional[Type[nn.Sequential]] = None
if conv.training:
map_to_fused_module_train = {
nn.Conv1d: nni.ConvBnReLU1d,
nn.Conv2d: nni.ConvBnReLU2d,
nn.Conv3d: nni.ConvBnReLU3d,
}
assert bn.num_features == conv.out_channels, 'Output channel of Conv must match num_features of BatchNorm'
assert bn.affine, 'Only support fusing BatchNorm with affine set to True'
assert bn.track_running_stats, 'Only support fusing BatchNorm with tracking_running_stats set to True'
fused_module = map_to_fused_module_train.get(type(conv), None)
if fused_module is not None:
return fused_module(conv, bn, relu)
else:
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn, relu)))
else:
map_to_fused_module_eval = {
nn.Conv1d: nni.ConvReLU1d,
nn.Conv2d: nni.ConvReLU2d,
nn.Conv3d: nni.ConvReLU3d,
}
fused_module = map_to_fused_module_eval.get(type(conv), None)
if fused_module is not None:
fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
return fused_module(fused_conv, relu)
else:
raise NotImplementedError("Cannot fuse eval modules: {}".format((conv, bn, relu)))
def fuse_linear_bn(linear, bn):
r"""Given the linear and bn modules, fuses them and returns the fused module
Args:
linear: Module instance of type Linear
bn: BatchNorm1d instance that needs to be fused with the linear layer
Examples::
>>> m1 = nn.Linear(20, 10)
>>> b1 = nn.BatchNorm1d(10)
>>> m2 = fuse_linear_bn(m1, b1)
"""
assert(linear.training == bn.training),\
"Linear and BN both must be in the same mode (train or eval)."
if linear.training:
raise Exception("Fusing Linear+BatchNorm not yet supported in training.")
else:
return nn.utils.fusion.fuse_linear_bn_eval(linear, bn)
def fuse_convtranspose_bn(convt, bn):
r"""Given ConvTranspose and bn modules, fuses them and returns the fused module
Args:
convt: Module instance of type ConvTransposeNd
bn: BatchNormNd instance that needs to be fused with the linear layer.
batch norm N should match the ConvTranspose N
Examples::
>>> m1 = nn.ConvTranspose2d(10, 20, 3)
>>> b1 = nn.BatchNorm2d(20)
>>> m2 = fuse_convtranspose_bn(m1, b1)
"""
assert(convt.training == bn.training),\
"ConvTranspose and BN both must be in the same mode (train or eval)."
if convt.training:
raise Exception("Fusing ConvTranspose+BatchNorm not yet supported in training.")
else:
return nn.utils.fusion.fuse_conv_bn_eval(convt, bn, transpose=True)
DEFAULT_OP_LIST_TO_FUSER_METHOD: Dict[Tuple, Union[nn.Sequential, Callable]] = {
(nn.Conv1d, nn.BatchNorm1d): fuse_conv_bn,
(nn.Conv1d, nn.BatchNorm1d, nn.ReLU): fuse_conv_bn_relu,
(nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn,
(nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu,
(nn.Conv3d, nn.BatchNorm3d): fuse_conv_bn,
(nn.Conv3d, nn.BatchNorm3d, nn.ReLU): fuse_conv_bn_relu,
(nn.Conv1d, nn.ReLU): nni.ConvReLU1d,
(nn.Conv2d, nn.ReLU): nni.ConvReLU2d,
(nn.Conv3d, nn.ReLU): nni.ConvReLU3d,
(nn.Linear, nn.BatchNorm1d): fuse_linear_bn,
(nn.Linear, nn.ReLU): nni.LinearReLU,
(nn.BatchNorm2d, nn.ReLU): nni.BNReLU2d,
(nn.BatchNorm3d, nn.ReLU): nni.BNReLU3d,
(nn.ConvTranspose1d, nn.BatchNorm1d): fuse_convtranspose_bn,
(nn.ConvTranspose2d, nn.BatchNorm2d): fuse_convtranspose_bn,
(nn.ConvTranspose3d, nn.BatchNorm3d): fuse_convtranspose_bn,
}
def get_fuser_method(op_list, additional_fuser_method_mapping=None):
''' Get fuser method for the given list of module types,
return None if fuser method does not exist
'''
if additional_fuser_method_mapping is None:
additional_fuser_method_mapping = dict()
all_mappings = get_combined_dict(DEFAULT_OP_LIST_TO_FUSER_METHOD,
additional_fuser_method_mapping)
fuser_method = all_mappings.get(op_list, None)
assert fuser_method is not None, "did not find fuser method for: {} ".format(op_list)
return fuser_method
def reverse2(f):
return lambda x, y: f(y, x)
def reverse3(f):
def reversed(x, w):
y, z = w
return f(z, y, x)
return reversed
DEFAULT_PATTERN_TO_FUSER_METHOD: Dict[Pattern, Union[nn.Sequential, Callable]] = {
(nn.BatchNorm1d, nn.Conv1d): reverse2(fuse_conv_bn),
(nn.ReLU, (nn.BatchNorm1d, nn.Conv1d)): reverse3(fuse_conv_bn_relu),
(nn.BatchNorm2d, nn.Conv2d): reverse2(fuse_conv_bn),
(nn.ReLU, (nn.BatchNorm2d, nn.Conv2d)): reverse3(fuse_conv_bn_relu),
(nn.BatchNorm3d, nn.Conv3d): reverse2(fuse_conv_bn),
(nn.ReLU, (nn.BatchNorm3d, nn.Conv3d)): reverse3(fuse_conv_bn_relu),
(nn.ReLU, nn.Conv1d): reverse2(nni.ConvReLU1d),
(nn.ReLU, nn.Conv2d): reverse2(nni.ConvReLU2d),
(nn.ReLU, nn.Conv3d): reverse2(nni.ConvReLU3d),
(nn.BatchNorm1d, nn.Linear): reverse2(fuse_linear_bn),
(nn.ReLU, nn.Linear): reverse2(nni.LinearReLU),
(nn.ReLU, nn.BatchNorm2d): reverse2(nni.BNReLU2d),
(nn.ReLU, nn.BatchNorm3d): reverse2(nni.BNReLU3d),
(nn.BatchNorm1d, nn.ConvTranspose1d): reverse2(fuse_convtranspose_bn),
(nn.BatchNorm2d, nn.ConvTranspose2d): reverse2(fuse_convtranspose_bn),
(nn.BatchNorm3d, nn.ConvTranspose3d): reverse2(fuse_convtranspose_bn),
}
def get_fuser_method_new(
op_pattern: Pattern,
fuser_method_mapping: Optional[Dict[Pattern, Union[nn.Sequential, Callable]]] = None):
""" This will be made defult after we deparate the get_fuser_method
Would like to implement this first and have a separate PR for deprecation
"""
if fuser_method_mapping is None:
fuser_method_mapping = DEFAULT_PATTERN_TO_FUSER_METHOD
fuser_method = fuser_method_mapping.get(op_pattern, None)
assert fuser_method is not None, "did not find fuser method for: {} ".format(op_pattern)
return fuser_method