mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/69982
Test Plan: Imported from OSS
Reviewed By: anjali411
Differential Revision: D33767865
Pulled By: mikaylagawarecki
fbshipit-source-id: c5efd351e359825d38b71f57a2c61a2055c3c114
(cherry picked from commit 37bb80c2d7)
260 lines
9.9 KiB
Python
260 lines
9.9 KiB
Python
import torch
|
|
from torch import Tensor
|
|
|
|
from .optimizer import Optimizer
|
|
from typing import List, Optional
|
|
|
|
|
|
class Adamax(Optimizer):
|
|
r"""Implements Adamax algorithm (a variant of Adam based on infinity norm).
|
|
|
|
.. math::
|
|
\begin{aligned}
|
|
&\rule{110mm}{0.4pt} \\
|
|
&\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2
|
|
\text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
|
|
\: \lambda \text{ (weight decay)}, \\
|
|
&\hspace{13mm} \epsilon \text{ (epsilon)} \\
|
|
&\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
|
|
u_0 \leftarrow 0 \text{ ( infinity norm)} \\[-1.ex]
|
|
&\rule{110mm}{0.4pt} \\
|
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
|
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
|
|
&\hspace{5mm}if \: \lambda \neq 0 \\
|
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
|
|
&\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
|
|
&\hspace{5mm}u_t \leftarrow \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon) \\
|
|
&\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
|
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
|
&\bf{return} \: \theta_t \\[-1.ex]
|
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
|
\end{aligned}
|
|
|
|
For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
|
|
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float, optional): learning rate (default: 2e-3)
|
|
betas (Tuple[float, float], optional): coefficients used for computing
|
|
running averages of gradient and its square
|
|
eps (float, optional): term added to the denominator to improve
|
|
numerical stability (default: 1e-8)
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
foreach (bool, optional): whether foreach implementation of optimizer is used (default: None)
|
|
|
|
.. _Adam\: A Method for Stochastic Optimization:
|
|
https://arxiv.org/abs/1412.6980
|
|
"""
|
|
|
|
def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,
|
|
weight_decay=0, foreach: Optional[bool] = None):
|
|
if not 0.0 <= lr:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if not 0.0 <= eps:
|
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
|
if not 0.0 <= weight_decay:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
|
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, foreach=foreach)
|
|
super(Adamax, self).__init__(params, defaults)
|
|
|
|
def __setstate__(self, state):
|
|
super().__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('foreach', None)
|
|
state_values = list(self.state.values())
|
|
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
|
|
if not step_is_tensor:
|
|
for s in state_values:
|
|
s['step'] = torch.tensor(float(s['step']))
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Args:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
with torch.enable_grad():
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
params_with_grad = []
|
|
grads = []
|
|
exp_avgs = []
|
|
exp_infs = []
|
|
state_steps = []
|
|
|
|
beta1, beta2 = group['betas']
|
|
eps = group['eps']
|
|
lr = group['lr']
|
|
weight_decay = group['weight_decay']
|
|
foreach = group['foreach']
|
|
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
params_with_grad.append(p)
|
|
if p.grad.is_sparse:
|
|
raise RuntimeError('Adamax does not support sparse gradients')
|
|
grads.append(p.grad)
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = torch.tensor(0.)
|
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
state['exp_inf'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
|
|
|
exp_avgs.append(state['exp_avg'])
|
|
exp_infs.append(state['exp_inf'])
|
|
state_steps.append(state['step'])
|
|
|
|
adamax(params_with_grad,
|
|
grads,
|
|
exp_avgs,
|
|
exp_infs,
|
|
state_steps,
|
|
eps=eps,
|
|
beta1=beta1,
|
|
beta2=beta2,
|
|
lr=lr,
|
|
weight_decay=weight_decay,
|
|
foreach=foreach)
|
|
|
|
return loss
|
|
|
|
|
|
def adamax(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_infs: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
|
|
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
|
|
foreach: bool = None,
|
|
*,
|
|
eps: float,
|
|
beta1: float,
|
|
beta2: float,
|
|
lr: float,
|
|
weight_decay: float):
|
|
r"""Functional API that performs adamax algorithm computation.
|
|
|
|
See :class:`~torch.optim.Adamax` for details.
|
|
"""
|
|
|
|
if not all([isinstance(t, torch.Tensor) for t in state_steps]):
|
|
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")
|
|
|
|
if foreach is None:
|
|
# Placeholder for more complex foreach logic to be added when value is not set
|
|
foreach = False
|
|
|
|
if foreach and torch.jit.is_scripting():
|
|
raise RuntimeError('torch.jit.script not supported with foreach optimizers')
|
|
|
|
if foreach and not torch.jit.is_scripting():
|
|
func = _multi_tensor_adamax
|
|
else:
|
|
func = _single_tensor_adamax
|
|
|
|
func(params,
|
|
grads,
|
|
exp_avgs,
|
|
exp_infs,
|
|
state_steps,
|
|
eps=eps,
|
|
beta1=beta1,
|
|
beta2=beta2,
|
|
lr=lr,
|
|
weight_decay=weight_decay)
|
|
|
|
|
|
def _single_tensor_adamax(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_infs: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
*,
|
|
eps: float,
|
|
beta1: float,
|
|
beta2: float,
|
|
lr: float,
|
|
weight_decay: float):
|
|
|
|
for i, param in enumerate(params):
|
|
grad = grads[i]
|
|
exp_avg = exp_avgs[i]
|
|
exp_inf = exp_infs[i]
|
|
step_t = state_steps[i]
|
|
# update step
|
|
step_t += 1
|
|
step = step_t.item()
|
|
|
|
if weight_decay != 0:
|
|
grad = grad.add(param, alpha=weight_decay)
|
|
|
|
# Update biased first moment estimate.
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
|
# Update the exponentially weighted infinity norm.
|
|
norm_buf = torch.cat([
|
|
exp_inf.mul_(beta2).unsqueeze(0),
|
|
grad.abs().add_(eps).unsqueeze_(0)
|
|
], 0)
|
|
torch.amax(norm_buf, 0, keepdim=False, out=exp_inf)
|
|
|
|
bias_correction = 1 - beta1 ** step
|
|
clr = lr / bias_correction
|
|
|
|
param.addcdiv_(exp_avg, exp_inf, value=-clr)
|
|
|
|
|
|
def _multi_tensor_adamax(params: List[Tensor],
|
|
grads: List[Tensor],
|
|
exp_avgs: List[Tensor],
|
|
exp_infs: List[Tensor],
|
|
state_steps: List[Tensor],
|
|
*,
|
|
beta1: float,
|
|
beta2: float,
|
|
lr: float,
|
|
weight_decay: float,
|
|
eps: float):
|
|
|
|
if len(params) == 0:
|
|
return
|
|
|
|
# Update steps
|
|
torch._foreach_add_(state_steps, 1)
|
|
|
|
if weight_decay != 0:
|
|
torch._foreach_add_(grads, params, alpha=weight_decay)
|
|
|
|
# Update biased first moment estimate.
|
|
torch._foreach_mul_(exp_avgs, beta1)
|
|
torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)
|
|
|
|
# Update the exponentially weighted infinity norm.
|
|
torch._foreach_mul_(exp_infs, beta2)
|
|
|
|
for exp_inf, grad in zip(exp_infs, grads):
|
|
norm_buf = torch.cat([
|
|
exp_inf.unsqueeze(0),
|
|
grad.abs().add_(eps).unsqueeze_(0)
|
|
], 0)
|
|
torch.max(norm_buf, 0, keepdim=False, out=(exp_inf, exp_inf.new().long()))
|
|
|
|
bias_corrections = [1 - beta1 ** step.item() for step in state_steps]
|
|
clr = [-1 * (lr / bias_correction) for bias_correction in bias_corrections]
|
|
torch._foreach_addcdiv_(params, exp_avgs, exp_infs, clr)
|