pytorch/caffe2/python/models/download.py
ttup7777 54ef852d7f Fix unclosed files in download.py, test_onnxifi.py, test_trt.py (#18017)
Summary:
According to https://docs.python.org/3/tutorial/inputoutput.html, it is good practice to use the "with" keyword when dealing with file objects. If not, you should call f.close() to close the file and immediately free up any system resources used by it.  Thus, I adjust the open file function to "with open() as f".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18017

Differential Revision: D14475112

Pulled By: ezyang

fbshipit-source-id: d1c0821e39cb8a09f86d6d08b437b4a99746416c
2019-03-15 07:29:46 -07:00

213 lines
7.6 KiB
Python

## @package download
# Module caffe2.python.models.download
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import os
import sys
import signal
import re
import json
from caffe2.proto import caffe2_pb2
# Import urllib
try:
import urllib.error as urlliberror
import urllib.request as urllib
HTTPError = urlliberror.HTTPError
URLError = urlliberror.URLError
except ImportError:
import urllib2 as urllib
HTTPError = urllib.HTTPError
URLError = urllib.URLError
# urllib requires more work to deal with a redirect, so not using vanity url
DOWNLOAD_BASE_URL = "https://s3.amazonaws.com/download.caffe2.ai/models/"
DOWNLOAD_COLUMNS = 70
# Don't let urllib hang up on big downloads
def signalHandler(signal, frame):
print("Killing download...")
exit(0)
signal.signal(signal.SIGINT, signalHandler)
def deleteDirectory(top_dir):
for root, dirs, files in os.walk(top_dir, topdown=False):
for name in files:
os.remove(os.path.join(root, name))
for name in dirs:
os.rmdir(os.path.join(root, name))
os.rmdir(top_dir)
def progressBar(percentage):
full = int(DOWNLOAD_COLUMNS * percentage / 100)
bar = full * "#" + (DOWNLOAD_COLUMNS - full) * " "
sys.stdout.write(u"\u001b[1000D[" + bar + "] " + str(percentage) + "%")
sys.stdout.flush()
def downloadFromURLToFile(url, filename, show_progress=True):
try:
print("Downloading from {url}".format(url=url))
response = urllib.urlopen(url)
size = int(response.info().get('Content-Length').strip())
chunk = min(size, 8192)
print("Writing to {filename}".format(filename=filename))
if show_progress:
downloaded_size = 0
progressBar(0)
with open(filename, "wb") as local_file:
while True:
data_chunk = response.read(chunk)
if not data_chunk:
break
local_file.write(data_chunk)
if show_progress:
downloaded_size += len(data_chunk)
progressBar(int(100 * downloaded_size / size))
print("") # New line to fix for progress bar
except HTTPError as e:
raise Exception("Could not download model. [HTTP Error] {code}: {reason}."
.format(code=e.code, reason=e.reason))
except URLError as e:
raise Exception("Could not download model. [URL Error] {reason}."
.format(reason=e.reason))
except Exception as e:
raise e
def getURLFromName(name, filename):
return "{base_url}{name}/{filename}".format(base_url=DOWNLOAD_BASE_URL,
name=name, filename=filename)
def downloadModel(model, args):
# Figure out where to store the model
model_folder = '{folder}'.format(folder=model)
dir_path = os.path.dirname(os.path.realpath(__file__))
if args.install:
model_folder = '{dir_path}/{folder}'.format(dir_path=dir_path,
folder=model)
# Check if that folder is already there
if os.path.exists(model_folder) and not os.path.isdir(model_folder):
if not args.force:
raise Exception("Cannot create folder for storing the model,\
there exists a file of the same name.")
else:
print("Overwriting existing file! ({filename})"
.format(filename=model_folder))
os.remove(model_folder)
if os.path.isdir(model_folder):
if not args.force:
response = ""
query = "Model already exists, continue? [y/N] "
try:
response = raw_input(query)
except NameError:
response = input(query)
if response.upper() == 'N' or not response:
print("Cancelling download...")
exit(0)
print("Overwriting existing folder! ({filename})".format(filename=model_folder))
deleteDirectory(model_folder)
# Now we can safely create the folder and download the model
os.makedirs(model_folder)
for f in ['predict_net.pb', 'init_net.pb']:
try:
downloadFromURLToFile(getURLFromName(model, f),
'{folder}/{f}'.format(folder=model_folder,
f=f))
except Exception as e:
print("Abort: {reason}".format(reason=str(e)))
print("Cleaning up...")
deleteDirectory(model_folder)
exit(0)
if args.install:
os.symlink("{folder}/__sym_init__.py".format(folder=dir_path),
"{folder}/__init__.py".format(folder=model_folder))
def validModelName(name):
invalid_names = ['__init__']
if name in invalid_names:
return False
if not re.match("^[/0-9a-zA-Z_-]+$", name):
return False
return True
class ModelDownloader:
def _model_dir(self, model):
caffe2_home = os.path.expanduser(os.getenv('CAFFE2_HOME', '~/.caffe2'))
models_dir = os.getenv('CAFFE2_MODELS', os.path.join(caffe2_home, 'models'))
return os.path.join(models_dir, model)
def _download(self, model):
model_dir = self._model_dir(model)
assert not os.path.exists(model_dir)
os.makedirs(model_dir)
for f in ['predict_net.pb', 'init_net.pb', 'value_info.json']:
url = getURLFromName(model, f)
dest = os.path.join(model_dir, f)
try:
try:
downloadFromURLToFile(url, dest,
show_progress=False)
except TypeError:
# show_progress not supported prior to
# Caffe2 78c014e752a374d905ecfb465d44fa16e02a28f1
# (Sep 17, 2017)
downloadFromURLToFile(url, dest)
except Exception as e:
print("Abort: {reason}".format(reason=e))
print("Cleaning up...")
deleteDirectory(model_dir)
exit(1)
def get_c2_model(self, model_name):
model_dir = self._model_dir(model_name)
if not os.path.exists(model_dir):
self._download(model_name)
c2_predict_pb = os.path.join(model_dir, 'predict_net.pb')
c2_predict_net = caffe2_pb2.NetDef()
with open(c2_predict_pb, 'rb') as f:
c2_predict_net.ParseFromString(f.read())
c2_predict_net.name = model_name
c2_init_pb = os.path.join(model_dir, 'init_net.pb')
c2_init_net = caffe2_pb2.NetDef()
with open(c2_init_pb, 'rb') as f:
c2_init_net.ParseFromString(f.read())
c2_init_net.name = model_name + '_init'
with open(os.path.join(model_dir, 'value_info.json')) as f:
value_info = json.load(f)
return c2_init_net, c2_predict_net, value_info
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Download or install pretrained models.')
parser.add_argument('model', nargs='+',
help='Model to download/install.')
parser.add_argument('-i', '--install', action='store_true',
help='Install the model.')
parser.add_argument('-f', '--force', action='store_true',
help='Force a download/installation.')
args = parser.parse_args()
for model in args.model:
if validModelName(model):
downloadModel(model, args)
else:
print("'{}' is not a valid model name.".format(model))