mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34258 This PR allows both atol and rtol to be specified, uses defaults based on the prior analysis (spreadsheet attached to https://github.com/pytorch/pytorch/pull/32538), but retains the absolute tolerance behavior in cases where precision was previously specified explicitly. Test Plan: Imported from OSS Differential Revision: D21110255 Pulled By: nairbv fbshipit-source-id: 57b3a004c7d5ac1be80ee765f03668b1b13f4a7e
2890 lines
130 KiB
Python
2890 lines
130 KiB
Python
from __future__ import division
|
|
from builtins import round
|
|
|
|
import numpy as np
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.jit
|
|
import torch.nn.functional as F
|
|
from torch.nn.modules.utils import _single, _pair
|
|
|
|
from hypothesis import settings, HealthCheck
|
|
from hypothesis import assume, given, note
|
|
from hypothesis import strategies as st
|
|
import torch.testing._internal.hypothesis_utils as hu
|
|
hu.assert_deadline_disabled()
|
|
|
|
from torch.testing._internal.common_utils import TEST_WITH_UBSAN, TestCase, run_tests, IS_PPC, IS_MACOS
|
|
from torch.testing._internal.common_quantized import _quantize, _dequantize, _calculate_dynamic_qparams, \
|
|
override_quantized_engine
|
|
|
|
np_dtype = {
|
|
torch.quint8 : np.uint8,
|
|
torch.qint8 : np.int8,
|
|
torch.qint32 : np.int32
|
|
}
|
|
|
|
# Make sure we won't have overflows from vpmaddubsw instruction used in FBGEMM.
|
|
# On the current Intel x86 architecture, we need to utilize vpmaddubsw instruction
|
|
# for the 8-bit int multiplication. This instruction vertically multiplies each
|
|
# unsigned 8-bit integer from a with the corresponding signed 8-bit integer from
|
|
# b, producing intermediate signed 16-bit integers. This function modifies the
|
|
# weights to eliminate the overflow on the signed 16-bit integers.
|
|
def avoid_vpmaddubsw_overflow_linear(
|
|
batch_size, input_channels, output_channels, X, X_min, X_max, W, W_min, W_max
|
|
):
|
|
for i, j in np.ndindex((batch_size, output_channels)):
|
|
for k in range(0, input_channels // 2 * 2, 2):
|
|
x0 = X[i, k] - X_min
|
|
x1 = X[i, k + 1] - X_min
|
|
w0 = W[j, k] - 128 - W_min
|
|
w1 = W[j, k + 1] - 128 - W_min
|
|
if x0 * w0 + x1 * w1 < -(1 << 15):
|
|
w1_adjusted = (-(1 << 15) - float(x0) * w0) / x1
|
|
W[j, k + 1] = int(w1_adjusted) + 128 + W_min
|
|
elif x0 * w0 + x1 * w1 > (1 << 15) - 1:
|
|
w1_adjusted = ((1 << 15) - 1 - float(x0) * w0) / x1
|
|
W[j, k + 1] = int(w1_adjusted) + 128 + W_min
|
|
|
|
# Go through the same loop again to double check we don't have any overflow
|
|
for i, j in np.ndindex((batch_size, output_channels)):
|
|
for k in range(0, input_channels // 2 * 2, 2):
|
|
x0 = X[i, k] - X_min
|
|
x1 = X[i, k + 1] - X_min
|
|
w0 = W[j, k] - 128 - W_min
|
|
w1 = W[j, k + 1] - 128 - W_min
|
|
assert -(1 << 15) <= x0 * w0 + x1 * w1 < (1 << 15)
|
|
|
|
|
|
# Reference quantized Linear operator
|
|
def qlinear_ref(X_q, X_scale, X_zp, W_q, W_scale, W_zp, b_q, Y_scale, Y_zp):
|
|
X_q = np.reshape(X_q, (-1, X_q.shape[X_q.ndim - 1]))
|
|
row_offsets_ref = X_q.sum(axis=1).astype(np.int32).reshape((-1, 1))
|
|
col_offsets_ref = W_q.sum(axis=1).astype(np.int32).reshape((1, -1))
|
|
assert X_q.ndim == 2
|
|
batch_size, input_channels = X_q.shape
|
|
Prod_XqWq_ref = (
|
|
np.matmul(X_q.astype(np.int32), W_q.astype(np.int32).T)
|
|
- W_zp * row_offsets_ref
|
|
- X_zp * col_offsets_ref
|
|
+ input_channels * X_zp * W_zp
|
|
)
|
|
if b_q is not None:
|
|
Prod_XqWq_ref += b_q
|
|
Y_q_ref = _quantize(Prod_XqWq_ref, Y_scale / (X_scale * W_scale), Y_zp)
|
|
return Y_q_ref
|
|
|
|
"""Computes the output shape given pooling parameters."""
|
|
def pool_output_shape(input_size, kernel_size, padding, stride,
|
|
dilation, ceiling_mode=False):
|
|
if stride is None:
|
|
stride = kernel_size
|
|
output_size = (
|
|
(input_size + 2 * padding - dilation * (kernel_size - 1) - 1
|
|
+ (stride - 1 if ceiling_mode else 0)) // stride + 1)
|
|
if (padding > 0 and
|
|
((output_size - 1) * stride >= input_size + padding)):
|
|
output_size += 1
|
|
return output_size
|
|
|
|
"""Common logic for hardswish testing, called from fbgemm and qnnpack testers"""
|
|
def _test_hardswish(self, X, Y_scale, Y_zero_point, engine):
|
|
if engine not in torch.backends.quantized.supported_engines:
|
|
return
|
|
with override_quantized_engine(engine):
|
|
X, (X_scale, X_zero_point, torch_type) = X
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=X_scale, zero_point=X_zero_point,
|
|
dtype=torch_type)
|
|
dqX = qX.dequantize()
|
|
|
|
dqY_hat = F.hardswish(dqX)
|
|
qY_hat = torch.quantize_per_tensor(dqY_hat, scale=Y_scale,
|
|
zero_point=Y_zero_point,
|
|
dtype=torch_type)
|
|
|
|
qY = torch.nn.quantized.functional.hardswish(
|
|
qX, scale=Y_scale, zero_point=Y_zero_point)
|
|
self.assertEqual(
|
|
qY, qY_hat,
|
|
message="Hardswish failed: {} vs {}".format(qY, qY_hat))
|
|
|
|
class TestQuantizedOps(TestCase):
|
|
|
|
"""Tests the correctness of the quantized::relu op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams()))
|
|
def test_qrelu(self, X):
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
Y = X.copy()
|
|
Y[Y < 0] = 0
|
|
qY = torch.quantize_per_tensor(torch.from_numpy(Y), scale=scale,
|
|
zero_point=zero_point, dtype=torch_type)
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
ops_under_test = {
|
|
'native': torch.relu,
|
|
'nn.functional': torch.nn.functional.relu,
|
|
}
|
|
|
|
for name, op in ops_under_test.items():
|
|
qY_hat = op(qX)
|
|
self.assertEqual(qY, qY_hat, message="{} relu failed".format(name))
|
|
|
|
ops_under_test_inplace = {
|
|
'inplace native': torch.relu_,
|
|
'inplace nn.functional': torch.nn.functional.relu_,
|
|
}
|
|
|
|
for name, op_ in ops_under_test_inplace.items():
|
|
qY_hat = qX.clone()
|
|
op_(qY_hat)
|
|
self.assertEqual(qY, qY_hat, message="{} relu failed".format(name))
|
|
|
|
"""Tests the correctness of the quantized::relu op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams()))
|
|
def test_qrelu6(self, X):
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
Y = X.copy()
|
|
Y[Y < 0] = 0
|
|
Y[Y > 6.0] = 6.0
|
|
qY = torch.quantize_per_tensor(torch.from_numpy(Y), scale=scale,
|
|
zero_point=zero_point, dtype=torch_type)
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
ops_under_test = {
|
|
'ops.quantized': torch.ops.quantized.relu6,
|
|
'module': torch.nn.quantized.ReLU6(),
|
|
}
|
|
|
|
for name, op in ops_under_test.items():
|
|
for inplace in (True, False):
|
|
if hasattr(op, 'inplace'):
|
|
op.inplace = inplace
|
|
qY_hat = op(qX)
|
|
else:
|
|
qY_hat = op(qX, inplace=inplace)
|
|
self.assertEqual(qY, qY_hat,
|
|
message="{} relu failed".format(name))
|
|
|
|
"""Tests the correctness of the quantized::relu op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams()),
|
|
alpha=st.floats(0.0, 1.0, allow_nan=False, allow_infinity=False))
|
|
def test_qrelu_leaky(self, X, alpha):
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
dqX = qX.dequantize()
|
|
|
|
# torch.nn.functional
|
|
op = torch.nn.functional.leaky_relu
|
|
dqY = op(dqX, negative_slope=alpha)
|
|
qY = torch.quantize_per_tensor(dqY, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
qY_hat = op(qX, negative_slope=alpha)
|
|
self.assertEqual(qY.dequantize(), qY_hat.dequantize(),
|
|
message="F.leaky_relu failed ({} vs {})".format(qY, qY_hat))
|
|
|
|
"""Tests the correctness of the quantized::elu op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
elements=hu.floats(-1e3, 1e3, allow_nan=False, allow_infinity=False),
|
|
qparams=hu.qparams()),
|
|
alpha=st.floats(0.01, 10.0, allow_nan=False, allow_infinity=False))
|
|
def test_qelu(self, X, alpha):
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
op = torch.nn.quantized.functional.elu
|
|
|
|
# calculate ELU(dqX) and quantize
|
|
dqX = qX.dequantize()
|
|
dqY_hat = dqX.clone()
|
|
dqY_hat[dqX < 0] = alpha * (torch.exp(dqY_hat[dqX < 0]) - 1.)
|
|
qY_hat = torch.quantize_per_tensor(dqY_hat, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
# test regular
|
|
qY = op(qX, alpha=alpha)
|
|
self.assertEqual(qY, qY_hat,
|
|
message="F.elu failed ({} vs {})".format(qY, qY_hat))
|
|
|
|
# test inplace
|
|
qXcopy = qX.clone()
|
|
op(qXcopy, alpha=alpha, inplace=True)
|
|
self.assertEqual(qXcopy, qY_hat,
|
|
message="F.elu_ failed ({} vs {})".format(qXcopy, qY_hat))
|
|
|
|
# test explicit scale and zp
|
|
qYout = op(qX, alpha=alpha, scale=scale, zero_point=zero_point)
|
|
self.assertEqual(qYout, qY_hat,
|
|
message="F.elu.out failed ({} vs {})".format(qY, qY_hat))
|
|
|
|
"""Tests the correctness of the quantized::qnnpack_sigmoid op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams()))
|
|
def test_qsigmoid(self, X):
|
|
# Note: QNNPACK is tested separately in TestQNNPackOps
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
X = torch.from_numpy(X)
|
|
Y = torch.sigmoid(X)
|
|
|
|
qX = torch.quantize_per_tensor(X, scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
# Quantize the reference to account for max error.
|
|
# Note that the output scale has +1, because we use scale of 1.0/2^BITS
|
|
# in the implementations.
|
|
f_min, f_max = 0.0, 1.0
|
|
q_min, q_max = torch.iinfo(torch_type).min, torch.iinfo(torch_type).max
|
|
output_scale = (f_max - f_min) / (q_max - q_min + 1.0)
|
|
output_zero_point = output_zero_point = 0 if torch_type == torch.qint32 else q_min
|
|
qY = torch.quantize_per_tensor(Y, scale=output_scale,
|
|
zero_point=output_zero_point,
|
|
dtype=torch_type)
|
|
qY_hat = torch.sigmoid(qX)
|
|
self.assertEqual(qY, qY_hat,
|
|
message="Sigmoid failed: {} vs. {}".format(qY, qY_hat))
|
|
|
|
"""Tests the correctness of the quantized::qhardsigmoid op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
elements=hu.floats(-1e3, 1e3, allow_nan=False, allow_infinity=False),
|
|
qparams=hu.qparams()))
|
|
def test_qhardsigmoid(self, X):
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
X = torch.from_numpy(X)
|
|
|
|
qX = torch.quantize_per_tensor(X, scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=torch_type)
|
|
dqX = qX.dequantize()
|
|
|
|
|
|
# Quantize the reference to account for max error.
|
|
# Note that the output scale has +1, because we use scale of 1.0/2^BITS
|
|
# in the implementations.
|
|
f_min, f_max = 0.0, 1.0
|
|
q_min, q_max = torch.iinfo(torch_type).min, torch.iinfo(torch_type).max
|
|
output_scale = (f_max - f_min) / (q_max - q_min + 1.0)
|
|
output_zero_point = 0 if torch_type == torch.qint32 else q_min
|
|
dqY_hat = F.hardsigmoid(dqX)
|
|
qY_hat = torch.quantize_per_tensor(dqY_hat, scale=output_scale,
|
|
zero_point=output_zero_point,
|
|
dtype=torch_type)
|
|
|
|
qY = torch.nn.quantized.functional.hardsigmoid(qX)
|
|
self.assertEqual(qY, qY_hat,
|
|
message="Hardsigmoid failed: {} vs. {}".format(qY, qY_hat))
|
|
|
|
|
|
"""Tests the correctness of the quantized::qlayer_norm op."""
|
|
@given(shapes=hu.array_shapes(3, 5, 1, 32),
|
|
torch_type=st.sampled_from((torch.qint8, torch.quint8, torch.qint32)),
|
|
X_rand_scale=st.floats(0.01, 1e3),
|
|
Y_scale=st.floats(0.2, 2.6),
|
|
Y_zero_point=st.integers(0, 5))
|
|
def test_qlayer_norm(self, shapes, torch_type, X_rand_scale, Y_scale, Y_zero_point):
|
|
if "fbgemm" not in torch.backends.quantized.supported_engines:
|
|
return
|
|
|
|
with override_quantized_engine("fbgemm"):
|
|
|
|
# In the FP kernel, mean and variance are calculated in floating point.
|
|
# In the quantized kernel, they are calculated in integer arithmetic.
|
|
# Because of this, the numerics do not always match exactly which is
|
|
# expected and acceptable. We do two things to whitelist this failure
|
|
# in this test:
|
|
# 1. do not use Hypothesis to generate the input tensor. Hypothesis
|
|
# favors homogeneous inputs in its search strategies which isn't
|
|
# representative of the inputs we care about, and tends to maximize
|
|
# this particular numerics difference.
|
|
# 2. whitelist a small % of off by Y_scale errors. Even when the
|
|
# variance of the input is high, there can be off by one errors
|
|
# in the result if the input value happens to fall exactly on
|
|
# the bin boundary of the output scale.
|
|
#
|
|
# If we want the numerics to match we could switch to calculating
|
|
# mean+var in floating point in the future, at the cost of speed.
|
|
|
|
X = (np.random.rand(*shapes).astype(np.float32) - 0.5) * X_rand_scale
|
|
|
|
# Calculate reasonable quantization params
|
|
min_val = np.min(X)
|
|
max_val = np.max(X)
|
|
if torch_type == torch.qint32:
|
|
X_zero_point = 0
|
|
num_bins = 2 ** 32
|
|
X_scale = float(max_val - min_val) / num_bins
|
|
elif torch_type == torch.qint8:
|
|
X_zero_point = 0
|
|
num_bins = 2 ** 8
|
|
X_scale = float(max_val - min_val) / num_bins
|
|
else: # torch.quint8
|
|
X_zero_point = 127
|
|
num_bins = 2 ** 8
|
|
X_scale = float(max_val - min_val) / num_bins
|
|
if X_scale == 0:
|
|
X_scale = 1e-10
|
|
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=X_scale,
|
|
zero_point=X_zero_point,
|
|
dtype=torch_type)
|
|
dqX = qX.dequantize()
|
|
|
|
# Enforce non-homogeneous inputs
|
|
enough_unique_vals_in_each_layer = sum(
|
|
1 if (
|
|
dqX[i].shape[0] < 5 or
|
|
float(torch.unique(dqX[i]).shape[0]) / dqX[i].shape[0] > 0.01
|
|
) else 0
|
|
for i in range(dqX.shape[0])
|
|
) == dqX.shape[0]
|
|
assume(enough_unique_vals_in_each_layer)
|
|
|
|
# Initialize the weights non-randomly for reproducibility, to avoid
|
|
# flaky tests
|
|
weight = torch.ones(*qX.size()[1:], dtype=torch.float) * 0.5
|
|
bias = torch.ones(*qX.size()[1:], dtype=torch.float) * 1
|
|
epsilon = 1e-5
|
|
|
|
qY = torch.ops.quantized.layer_norm(
|
|
qX, qX.size()[1:], weight=weight, bias=bias, eps=epsilon,
|
|
output_scale=Y_scale, output_zero_point=Y_zero_point)
|
|
|
|
Y_hat = F.layer_norm(
|
|
dqX, dqX.size()[1:], weight=weight, bias=bias, eps=epsilon)
|
|
qY_hat = torch.quantize_per_tensor(
|
|
Y_hat, scale=Y_scale, zero_point=Y_zero_point, dtype=torch_type)
|
|
|
|
# Due to the numerics difference mentioned above between calculating
|
|
# the variance in float vs int, the results can still be slightly
|
|
# different.
|
|
dqY = qY.dequantize()
|
|
dqY_hat = qY_hat.dequantize()
|
|
diff = dqY - dqY_hat
|
|
|
|
# off-by-one errors are magnitude of Y_scale
|
|
num_diff = torch.sum(diff > Y_scale * 1.0001)
|
|
pct_diff = float(num_diff) / (diff.numel() + 1e-5)
|
|
num_diff_off_by_one = torch.sum((diff > 0) * (diff <= Y_scale))
|
|
pct_diff_off_by_one = float(num_diff_off_by_one) / (diff.numel() + 1e-5)
|
|
|
|
note("LayerNorm failed:\n {} input vs\n {} actual vs \n{} expected"
|
|
.format(X, qY, qY_hat))
|
|
note("Pct diff: {}".format(pct_diff))
|
|
note("Pct diff off by one: {}".format(pct_diff_off_by_one))
|
|
|
|
self.assertTrue(pct_diff < 1e-6)
|
|
self.assertTrue(pct_diff_off_by_one < 0.01)
|
|
|
|
|
|
"""Tests the correctness of the quantized::qnnpack_tanh op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams()))
|
|
def test_qtanh(self, X):
|
|
# Note: QNNPACK is tested separately in TestQNNPackOps
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
X = torch.from_numpy(X)
|
|
Y = torch.tanh(X)
|
|
|
|
qX = torch.quantize_per_tensor(X, scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
# Quantize the reference to account for max error.
|
|
# Note that the output scale has +1, because we use scale of 2.0/2^BITS
|
|
# in the implementations.
|
|
f_min, f_max = -1.0, 1.0
|
|
q_min, q_max = torch.iinfo(torch_type).min, torch.iinfo(torch_type).max
|
|
output_scale = (f_max - f_min) / (q_max - q_min + 1.0)
|
|
output_zero_point = int(round((q_max + q_min) / 2.0))
|
|
qY = torch.quantize_per_tensor(Y, scale=output_scale,
|
|
zero_point=output_zero_point,
|
|
dtype=torch_type)
|
|
qY_hat = torch.tanh(qX)
|
|
self.assertEqual(qY, qY_hat,
|
|
message="TanH failed: {} vs. {}".format(qY, qY_hat))
|
|
|
|
"""Tests the correctness of the quantized::clamp op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 8, 1, 8),
|
|
elements=hu.floats(-1e6, 1e6, allow_nan=False),
|
|
qparams=hu.qparams()),
|
|
min_val=hu.floats(-1e6, 1e6, allow_nan=False),
|
|
max_val=hu.floats(-1e6, 1e6, allow_nan=False))
|
|
def test_qclamp(self, X, min_val, max_val):
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
assume(min_val <= max_val)
|
|
Y = X.copy()
|
|
Y[Y < min_val] = min_val
|
|
Y[Y > max_val] = max_val
|
|
qY = torch.quantize_per_tensor(torch.from_numpy(Y), scale=scale,
|
|
zero_point=zero_point, dtype=torch_type)
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
ops_under_test = {
|
|
'ops.quantized': torch.ops.quantized.clamp,
|
|
}
|
|
|
|
for name, op in ops_under_test.items():
|
|
qY_hat = op(qX, min_val, max_val)
|
|
self.assertEqual(qY, qY_hat, message="{} qclamp failed".format(name))
|
|
|
|
"""Tests the correctness of the quantized::hardtanh op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 8, 1, 8),
|
|
elements=hu.floats(-1e6, 1e6, allow_nan=False, allow_infinity=False),
|
|
qparams=hu.qparams()),
|
|
min_val=hu.floats(-1e6, 1e6, allow_nan=False, allow_infinity=False),
|
|
max_val=hu.floats(-1e6, 1e6, allow_nan=False, allow_infinity=False))
|
|
def test_hardtanh(self, X, min_val, max_val):
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
assume(min_val <= max_val)
|
|
Y = X.copy()
|
|
Y[Y < min_val] = min_val
|
|
Y[Y > max_val] = max_val
|
|
qY = torch.quantize_per_tensor(torch.from_numpy(Y), scale=scale,
|
|
zero_point=zero_point, dtype=torch_type)
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
ops_under_test = {
|
|
'nn.quantized.functional.hardtanh':
|
|
torch.nn.quantized.functional.hardtanh,
|
|
}
|
|
|
|
for name, op in ops_under_test.items():
|
|
qY_hat = op(qX, min_val, max_val)
|
|
self.assertEqual(qY, qY_hat, message="{} hardtanh failed".format(name))
|
|
|
|
ops_under_test_inplace = {
|
|
'inplace nn.quantized.functional.hardtanh':
|
|
torch.nn.quantized.functional.hardtanh,
|
|
}
|
|
|
|
for name, op_ in ops_under_test_inplace.items():
|
|
qY_hat = qX.clone()
|
|
op_(qY_hat, min_val, max_val, inplace=True)
|
|
self.assertEqual(qY, qY_hat, message="{} hardtanh failed".format(name))
|
|
|
|
"""Tests the correctness of the quantized::hardswish op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 8, 1, 8),
|
|
elements=hu.floats(-1e6, 1e6, allow_nan=False, allow_infinity=False),
|
|
qparams=hu.qparams()),
|
|
Y_scale=st.floats(1e-6, 1e6),
|
|
Y_zero_point=st.integers(0, 10))
|
|
def test_hardswish(self, X, Y_scale, Y_zero_point):
|
|
_test_hardswish(self, X, Y_scale, Y_zero_point, 'fbgemm')
|
|
|
|
"""Tests the correctness of the scalar addition."""
|
|
@unittest.skip("Failing on MacOS")
|
|
@given(A=hu.tensor(shapes=hu.array_shapes(1, 4, 1, 5),
|
|
elements=hu.floats(-1e6, 1e6, allow_nan=False),
|
|
qparams=hu.qparams()),
|
|
b=hu.floats(-1e6, 1e6, allow_nan=False, allow_infinity=False))
|
|
def test_qadd_scalar_relu(self, A, b):
|
|
import copy
|
|
add_scalar = torch.ops.quantized.add_scalar
|
|
add_scalar_relu = torch.ops.quantized.add_scalar_relu
|
|
|
|
A, (scale, zero_point, dtype) = A
|
|
A = A.astype(np.float32)
|
|
qA = torch.quantize_per_tensor(torch.from_numpy(A), scale, zero_point, dtype)
|
|
|
|
C = qA.dequantize() + round(b / scale) * scale
|
|
C_relu = copy.deepcopy(C)
|
|
C_relu[C_relu < 0] = 0
|
|
|
|
C_hat = add_scalar(qA, b)
|
|
C_ref = torch.quantize_per_tensor(C, C_hat.q_scale(), C_hat.q_zero_point(), dtype)
|
|
C_relu_hat = add_scalar_relu(qA, b)
|
|
C_relu_ref = torch.quantize_per_tensor(
|
|
C_relu, C_relu_hat.q_scale(), C_relu_hat.q_zero_point(), dtype)
|
|
|
|
self.assertEqual(C_ref.dequantize(), C_hat.dequantize(),
|
|
message="Scalar add results don't match:\
|
|
{} vs {}".format(C_ref.dequantize(), C_hat.dequantize()))
|
|
self.assertEqual(C_relu_ref.dequantize(), C_relu_hat.dequantize(),
|
|
message="Scalar add relu results don't match:\
|
|
{} vs {}".format(C_relu_ref.dequantize(), C_relu_hat.dequantize()))
|
|
|
|
"""Tests the correctness of the add and add_relu op."""
|
|
def test_qadd_relu_same_qparams(self):
|
|
for dtype in [torch.quint8, torch.qint8, torch.qint32]:
|
|
add_relu = torch.ops.quantized.add_relu
|
|
add = torch.ops.quantized.add
|
|
add_out = torch.ops.quantized.add_out
|
|
add_relu_out = torch.ops.quantized.add_relu_out
|
|
|
|
# NB: This is a strange size so that we exercise both the vectorized
|
|
# implementation (64-element chunks at at time) as well as the scalar
|
|
# implementation
|
|
A = torch.arange(-128, 130, dtype=torch.float)
|
|
B = torch.arange(-128, 130, dtype=torch.float)
|
|
scale = 2.0
|
|
zero_point = 127
|
|
qA = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point,
|
|
dtype=dtype)
|
|
qB = torch.quantize_per_tensor(B, scale=scale, zero_point=zero_point,
|
|
dtype=dtype)
|
|
|
|
# Add ReLU ground truth
|
|
C = (qA.dequantize() + qB.dequantize()).numpy()
|
|
qC = _quantize(C, scale, zero_point, dtype=np_dtype[dtype])
|
|
qC_hat = add(qA, qB, scale=scale, zero_point=zero_point)
|
|
np.testing.assert_equal(qC, qC_hat.int_repr(),
|
|
"Quantized addition failed.")
|
|
qC_out_hat = torch._empty_affine_quantized(qC.shape,
|
|
scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=dtype)
|
|
add_out(qA, qB, out=qC_out_hat)
|
|
self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed")
|
|
|
|
# Add + ReLU ground truth
|
|
Crelu = C.copy()
|
|
Crelu[C < 0] = 0
|
|
qCrelu = _quantize(Crelu, scale, zero_point, dtype=np_dtype[dtype])
|
|
qCrelu_hat = add_relu(qA, qB, scale=scale, zero_point=zero_point)
|
|
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
|
|
"Quantized addition with ReLU failed.")
|
|
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
|
|
scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=dtype)
|
|
add_relu_out(qA, qB, out=qCrelu_out_hat)
|
|
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
|
|
message="AddReLU.out failed")
|
|
|
|
|
|
"""Tests the correctness of the add and add_relu op."""
|
|
def test_qadd_relu_different_qparams(self):
|
|
for dtype in [torch.quint8, torch.qint8, torch.qint32]:
|
|
add_relu = torch.ops.quantized.add_relu
|
|
add = torch.ops.quantized.add
|
|
add_out = torch.ops.quantized.add_out
|
|
add_relu_out = torch.ops.quantized.add_relu_out
|
|
|
|
# NB: This is a strange size so that we exercise both the vectorized
|
|
# implementation (64-element chunks at at time) as well as the scalar
|
|
# implementation
|
|
A = torch.arange(-128, 130, dtype=torch.float)
|
|
B = torch.arange(-128, 130, dtype=torch.float)
|
|
scale_A = 3.0
|
|
zero_point_A = 7
|
|
scale_B = 5.0
|
|
zero_point_B = 127
|
|
|
|
scale_C = 0.5
|
|
zero_point_C = 5
|
|
|
|
qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A,
|
|
dtype=dtype)
|
|
qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point_B,
|
|
dtype=dtype)
|
|
|
|
# Add ground truth
|
|
C = (qA.dequantize() + qB.dequantize()).numpy()
|
|
qC = _quantize(C, scale_C, zero_point_C, dtype=np_dtype[dtype])
|
|
qC_hat = add(qA, qB, scale=scale_C, zero_point=zero_point_C)
|
|
np.testing.assert_equal(qC, qC_hat.int_repr(),
|
|
"Quantized addition failed.")
|
|
qC_out_hat = torch._empty_affine_quantized(qC.shape,
|
|
scale=scale_C,
|
|
zero_point=zero_point_C,
|
|
dtype=dtype)
|
|
add_out(qA, qB, out=qC_out_hat)
|
|
self.assertEqual(qC_hat, qC_out_hat, message="Add.out failed")
|
|
|
|
# Add + ReLU ground truth
|
|
Crelu = C.copy()
|
|
Crelu[C < 0] = 0
|
|
qCrelu = _quantize(Crelu, scale_C, zero_point_C, dtype=np_dtype[dtype])
|
|
qCrelu_hat = add_relu(qA, qB, scale=scale_C, zero_point=zero_point_C)
|
|
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
|
|
"Quantized addition with ReLU failed.")
|
|
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
|
|
scale=scale_C,
|
|
zero_point=zero_point_C,
|
|
dtype=dtype)
|
|
add_relu_out(qA, qB, out=qCrelu_out_hat)
|
|
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
|
|
message="AddReLU.out failed")
|
|
|
|
"""Tests the correctness of the mul and mul_relu op."""
|
|
def test_qmul_relu_same_qparams(self):
|
|
for dtype in [torch.quint8, torch.qint8, torch.qint32]:
|
|
mul_relu = torch.ops.quantized.mul_relu
|
|
mul = torch.ops.quantized.mul
|
|
mul_out = torch.ops.quantized.mul_out
|
|
mul_relu_out = torch.ops.quantized.mul_relu_out
|
|
|
|
A = torch.arange(-100, 100, dtype=torch.float)
|
|
B = torch.arange(-100, 100, dtype=torch.float)
|
|
scale = 2.0
|
|
zero_point = 127
|
|
qA = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point,
|
|
dtype=dtype)
|
|
qB = torch.quantize_per_tensor(B, scale=scale, zero_point=zero_point,
|
|
dtype=dtype)
|
|
|
|
# mul ReLU ground truth
|
|
C = (qA.dequantize() * qB.dequantize()).numpy()
|
|
qC = _quantize(C, scale, zero_point, dtype=np_dtype[dtype])
|
|
qC_hat = mul(qA, qB, scale=scale, zero_point=zero_point)
|
|
np.testing.assert_equal(qC, qC_hat.int_repr(),
|
|
"Quantized mulition failed.")
|
|
qC_out_hat = torch._empty_affine_quantized(qC.shape,
|
|
scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=dtype)
|
|
mul_out(qA, qB, out=qC_out_hat)
|
|
self.assertEqual(qC_hat, qC_out_hat, message="mul.out failed")
|
|
|
|
# mul + ReLU ground truth
|
|
Crelu = C.copy()
|
|
Crelu[C < 0] = 0
|
|
qCrelu = _quantize(Crelu, scale, zero_point, dtype=np_dtype[dtype])
|
|
qCrelu_hat = mul_relu(qA, qB, scale=scale, zero_point=zero_point)
|
|
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
|
|
"Quantized mulition with ReLU failed.")
|
|
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
|
|
scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=dtype)
|
|
mul_relu_out(qA, qB, out=qCrelu_out_hat)
|
|
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
|
|
message="mulReLU.out failed")
|
|
|
|
# Scalar multiplication
|
|
for b in B:
|
|
C_ref = qA.dequantize().numpy() * b.item()
|
|
qC_hat = torch.ops.quantized.mul_scalar(qA, b.item())
|
|
|
|
self.assertEqual(C_ref, qC_hat.dequantize())
|
|
|
|
# Scalar multiplication + relu
|
|
for b in B:
|
|
C_ref = qA.dequantize().numpy() * b.item()
|
|
C_ref[C_ref < 0] = 0
|
|
qC_hat = torch.ops.quantized.mul_scalar_relu(qA, b.item())
|
|
|
|
self.assertEqual(C_ref, qC_hat.dequantize())
|
|
|
|
"""Tests the correctness of the mul and mul_relu op."""
|
|
def test_qmul_relu_different_qparams(self):
|
|
for dtype in [torch.quint8, torch.qint8, torch.qint32]:
|
|
mul_relu = torch.ops.quantized.mul_relu
|
|
mul = torch.ops.quantized.mul
|
|
mul_out = torch.ops.quantized.mul_out
|
|
mul_relu_out = torch.ops.quantized.mul_relu_out
|
|
|
|
A = torch.arange(-100, 100, dtype=torch.float)
|
|
B = torch.arange(-100, 100, dtype=torch.float)
|
|
scale_A = 3.0
|
|
zero_point_A = 7
|
|
scale_B = 5.0
|
|
zero_point_B = 127
|
|
|
|
scale_C = 0.5
|
|
zero_point_C = 5
|
|
|
|
qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A,
|
|
dtype=dtype)
|
|
qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point_B,
|
|
dtype=dtype)
|
|
|
|
# mul ground truth
|
|
C = (qA.dequantize() * qB.dequantize()).numpy()
|
|
qC = _quantize(C, scale_C, zero_point_C, dtype=np_dtype[dtype])
|
|
qC_hat = mul(qA, qB, scale=scale_C, zero_point=zero_point_C)
|
|
np.testing.assert_equal(qC, qC_hat.int_repr(),
|
|
"Quantized multiplication failed.")
|
|
qC_out_hat = torch._empty_affine_quantized(qC.shape,
|
|
scale=scale_C,
|
|
zero_point=zero_point_C,
|
|
dtype=dtype)
|
|
mul_out(qA, qB, out=qC_out_hat)
|
|
self.assertEqual(qC_hat, qC_out_hat, message="mul.out failed")
|
|
|
|
# mul + ReLU ground truth
|
|
Crelu = C.copy()
|
|
Crelu[C < 0] = 0
|
|
qCrelu = _quantize(Crelu, scale_C, zero_point_C, dtype=np_dtype[dtype])
|
|
qCrelu_hat = mul_relu(qA, qB, scale=scale_C, zero_point=zero_point_C)
|
|
np.testing.assert_equal(qCrelu, qCrelu_hat.int_repr(),
|
|
"Quantized multiplication with ReLU failed.")
|
|
qCrelu_out_hat = torch._empty_affine_quantized(qCrelu.shape,
|
|
scale=scale_C,
|
|
zero_point=zero_point_C,
|
|
dtype=dtype)
|
|
mul_relu_out(qA, qB, out=qCrelu_out_hat)
|
|
self.assertEqual(qCrelu_hat, qCrelu_out_hat,
|
|
message="mulReLU.out failed")
|
|
|
|
"""Tests the correctness of the mul and mul_relu op."""
|
|
def test_qmul_broadcast(self):
|
|
mul_relu = torch.ops.quantized.mul_relu
|
|
mul = torch.ops.quantized.mul
|
|
mul_out = torch.ops.quantized.mul_out
|
|
mul_relu_out = torch.ops.quantized.mul_relu_out
|
|
|
|
# A = torch.arange(-25, 25, dtype=torch.float)
|
|
# B = torch.arange(-25, 25, dtype=torch.float)
|
|
A = torch.randn(8, 1, 6, 1)
|
|
B = torch.randn(7, 1, 5)
|
|
scale_A = 3.0
|
|
zero_point_A = 7
|
|
scale_B = 5.0
|
|
zero_point_B = 127
|
|
|
|
scale_C = 0.5
|
|
zero_point_C = 5
|
|
|
|
qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A,
|
|
dtype=torch.quint8)
|
|
qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point_B,
|
|
dtype=torch.quint8)
|
|
|
|
# mul ground truth
|
|
C = (qA.dequantize() * qB.dequantize()).numpy()
|
|
qC = _quantize(C, scale_C, zero_point_C)
|
|
qC_hat = mul(qA, qB, scale=scale_C, zero_point=zero_point_C)
|
|
np.testing.assert_equal(qC, qC_hat.int_repr(),
|
|
"Quantized multiplication failed.")
|
|
|
|
"""Tests max pool operation on quantized tensors."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
|
|
min_side=1, max_side=10),
|
|
qparams=hu.qparams()),
|
|
kernel=st.sampled_from((3, 5, 7)),
|
|
stride=st.sampled_from((None, 1, 2)),
|
|
dilation=st.integers(1, 2),
|
|
padding=st.integers(0, 2),
|
|
ceil_mode=st.booleans())
|
|
def test_max_pool2d(self, X, kernel, stride, dilation, padding, ceil_mode):
|
|
X, (scale, zero_point, torch_type) = X
|
|
# Check constraints
|
|
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
|
|
iH, iW = X.shape[-2:]
|
|
oH = pool_output_shape(iH, kernel, padding, stride, dilation, ceil_mode)
|
|
assume(oH > 0)
|
|
oW = pool_output_shape(iW, kernel, padding, stride, dilation, ceil_mode)
|
|
assume(oW > 0)
|
|
|
|
a = torch.from_numpy(X)
|
|
a_pool = torch.nn.functional.max_pool2d(a, kernel_size=kernel,
|
|
stride=stride,
|
|
padding=padding, dilation=dilation,
|
|
ceil_mode=ceil_mode)
|
|
a_ref = torch.quantize_per_tensor(a_pool, scale=scale,
|
|
zero_point=zero_point, dtype=torch_type)
|
|
a_ref = a_ref.dequantize()
|
|
qa = torch.quantize_per_tensor(a, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
ops_under_test = {
|
|
"torch": torch.max_pool2d,
|
|
"nn.functional": torch.nn.functional.max_pool2d,
|
|
"nn.quantized.functional": torch.nn.quantized.functional.max_pool2d
|
|
}
|
|
|
|
for name, op in ops_under_test.items():
|
|
a_hat = op(qa, kernel_size=kernel, stride=stride, padding=padding,
|
|
dilation=dilation, ceil_mode=ceil_mode)
|
|
self.assertEqual(a_ref, a_hat.dequantize(),
|
|
message="{} results are off".format(name))
|
|
# Test the ops.quantized separately, because None is not treated.
|
|
a_hat = torch.ops.quantized.max_pool2d(
|
|
qa, kernel_size=_pair(kernel),
|
|
stride=_pair(kernel if stride is None else stride),
|
|
padding=_pair(padding), dilation=_pair(dilation), ceil_mode=ceil_mode)
|
|
self.assertEqual(a_ref, a_hat.dequantize(),
|
|
message="ops.quantized.max_pool2d results are off")
|
|
|
|
"""Tests max pool operation on NHWC quantized tensors."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
|
|
min_side=1, max_side=10),
|
|
qparams=hu.qparams()),
|
|
kernel=st.sampled_from((3, 5, 7)),
|
|
stride=st.sampled_from((None, 1, 2)),
|
|
dilation=st.integers(1, 2),
|
|
padding=st.integers(0, 2),
|
|
ceil_mode=st.booleans())
|
|
def test_max_pool2d_nhwc(self, X, kernel, stride, dilation, padding, ceil_mode):
|
|
X, (scale, zero_point, torch_type) = X
|
|
# Ensure we hit the vectorized paths
|
|
# 176 = 128 + 32 + 16
|
|
# 128 hits the interleaved path
|
|
# 32 hits the non-interleaved path
|
|
# 16 hits the scalar path
|
|
if X.shape[1] < 176:
|
|
X = np.repeat(X, 176 / X.shape[1], 1)
|
|
# Check constraints
|
|
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
|
|
iH, iW = X.shape[-2:]
|
|
oH = pool_output_shape(iH, kernel, padding, stride, dilation, ceil_mode)
|
|
assume(oH > 0)
|
|
oW = pool_output_shape(iW, kernel, padding, stride, dilation, ceil_mode)
|
|
assume(oW > 0)
|
|
|
|
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1]))
|
|
a = torch.from_numpy(X_nchw).permute([0, 3, 1, 2])
|
|
a_pool = torch.nn.functional.max_pool2d(a, kernel_size=kernel,
|
|
stride=stride,
|
|
padding=padding, dilation=dilation,
|
|
ceil_mode=ceil_mode)
|
|
a_ref = torch.quantize_per_tensor(a_pool, scale=scale,
|
|
zero_point=zero_point, dtype=torch_type)
|
|
a_ref = a_ref.dequantize()
|
|
qa = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale, zero_point=zero_point,
|
|
dtype=torch_type).permute([0, 3, 1, 2])
|
|
self.assertTrue(qa.stride() != sorted(qa.stride()))
|
|
|
|
ops_under_test = {
|
|
"torch": torch.max_pool2d,
|
|
"nn.functional": torch.nn.functional.max_pool2d,
|
|
"nn.quantized.functional": torch.nn.quantized.functional.max_pool2d
|
|
}
|
|
|
|
for name, op in ops_under_test.items():
|
|
a_hat = op(qa, kernel_size=kernel, stride=stride, padding=padding,
|
|
dilation=dilation, ceil_mode=ceil_mode)
|
|
self.assertTrue(a_hat.stride() != sorted(a_hat.stride()))
|
|
self.assertEqual(a_ref, a_hat.dequantize(),
|
|
message="{} results are off".format(name))
|
|
# Test the ops.quantized separately, because None is not treated.
|
|
a_hat = torch.ops.quantized.max_pool2d(
|
|
qa, kernel_size=_pair(kernel),
|
|
stride=_pair(kernel if stride is None else stride),
|
|
padding=_pair(padding), dilation=_pair(dilation), ceil_mode=ceil_mode)
|
|
self.assertEqual(a_ref, a_hat.dequantize(),
|
|
message="ops.quantized.max_pool2d results are off")
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
|
|
min_side=5, max_side=10),
|
|
qparams=hu.qparams(dtypes=torch.quint8)),
|
|
kernel=st.sampled_from((3, 5)),
|
|
stride=st.sampled_from((None, 1, 2)),
|
|
padding=st.integers(0, 2),
|
|
ceil_mode=st.sampled_from((True, False)),
|
|
count_include_pad=st.sampled_from((True, False)),
|
|
divisor_override=st.sampled_from((None, None)))
|
|
def test_avg_pool2d(self, X, kernel, stride, padding, ceil_mode, count_include_pad, divisor_override):
|
|
"""
|
|
Note: we currently cannot test the divisor_override, because quantized op will clamp the result
|
|
within range. However, the float op will not.
|
|
"""
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
|
|
iH, iW = X.shape[-2:]
|
|
oH = pool_output_shape(iH, kernel, padding, stride, dilation=1)
|
|
assume(oH > 0)
|
|
oW = pool_output_shape(iW, kernel, padding, stride, dilation=1)
|
|
assume(oW > 0)
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
X = qX.dequantize()
|
|
# Run reference on float tensor and then quantize the result for comparison
|
|
X_ref = torch.nn.functional.avg_pool2d(
|
|
X, kernel_size=kernel, stride=stride, padding=padding,
|
|
ceil_mode=ceil_mode, count_include_pad=count_include_pad, divisor_override=divisor_override)
|
|
ops_under_test = {
|
|
"nn.functional": torch.nn.functional.avg_pool2d,
|
|
"nn.quantized.functional": torch.nn.quantized.functional.avg_pool2d
|
|
}
|
|
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
|
|
for name, op in ops_under_test.items():
|
|
qX_hat = op(qX, kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode,
|
|
count_include_pad=count_include_pad, divisor_override=divisor_override)
|
|
qX_ref = torch.quantize_per_tensor(X_ref, scale=qX_hat.q_scale(), zero_point=qX_hat.q_zero_point(),
|
|
dtype=torch_type)
|
|
|
|
self.assertEqual(qX_ref.int_repr().to(torch.double), qX_hat.int_repr().to(torch.double), atol=1.0,
|
|
message=error_message.format(name, qX_hat.int_repr(), qX_ref.int_repr()))
|
|
self.assertEqual(scale, qX_hat.q_scale(),
|
|
message=error_message.format(name + '.scale', scale, qX_hat.q_scale()))
|
|
self.assertEqual(zero_point, qX_hat.q_zero_point(),
|
|
message=error_message.format(name + '.zero_point', scale,
|
|
qX_hat.q_zero_point()))
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
|
|
min_side=5, max_side=10),
|
|
qparams=hu.qparams(dtypes=torch.qint8)),
|
|
kernel=st.sampled_from((4, 5)),
|
|
stride=st.sampled_from((None, 1, 2)),
|
|
padding=st.integers(0, 2),
|
|
ceil_mode=st.sampled_from((True, False)),
|
|
count_include_pad=st.sampled_from((True, False)),
|
|
divisor_override=st.sampled_from((None, None)))
|
|
def test_avg_pool2d_nhwc(self, X, kernel, stride, padding, ceil_mode, count_include_pad, divisor_override):
|
|
"""
|
|
Note: 1) we currently cannot test the divisor_override, because quantized op will clamp the result
|
|
within range. However, the float op will not.
|
|
2) we cannot test the qint32, since the float point precision is much lower than int32 for big number,
|
|
which will make the test be very flaky.
|
|
"""
|
|
X, (scale, zero_point, torch_type) = X
|
|
H, W = X.shape[-2:]
|
|
|
|
|
|
if X.shape[1] < 176:
|
|
X = np.repeat(X, 176 / X.shape[1], 1)
|
|
|
|
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
|
|
iH, iW = X.shape[-2:]
|
|
oH = pool_output_shape(iH, kernel, padding, stride, dilation=1)
|
|
assume(oH > 0)
|
|
oW = pool_output_shape(iW, kernel, padding, stride, dilation=1)
|
|
assume(oW > 0)
|
|
|
|
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1]))
|
|
|
|
qX = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale,
|
|
zero_point=zero_point, dtype=torch_type).permute([0, 3, 1, 2])
|
|
X = qX.dequantize()
|
|
|
|
# Run reference on int_repr + round to avoid double rounding error.
|
|
X_ref = torch.nn.functional.avg_pool2d(
|
|
X, kernel_size=kernel, stride=stride, padding=padding,
|
|
ceil_mode=ceil_mode, count_include_pad=count_include_pad, divisor_override=divisor_override)
|
|
|
|
self.assertTrue(qX.stride() != sorted(qX.stride()))
|
|
ops_under_test = {
|
|
"nn.functional": torch.nn.functional.avg_pool2d,
|
|
"nn.quantized.functional": torch.nn.quantized.functional.avg_pool2d
|
|
}
|
|
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
|
|
for name, op in ops_under_test.items():
|
|
X_hat = op(qX, kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode,
|
|
count_include_pad=count_include_pad, divisor_override=divisor_override)
|
|
self.assertTrue(X_hat.stride() != sorted(X_hat.stride()))
|
|
qX_ref = torch.quantize_per_tensor(X_ref, scale=X_hat.q_scale(), zero_point=X_hat.q_zero_point(),
|
|
dtype=torch_type)
|
|
|
|
self.assertEqual(qX_ref.int_repr().to(torch.double), X_hat.int_repr().to(torch.double), atol=1.0,
|
|
message=error_message.format(name, X_hat.int_repr(), qX_ref.int_repr()))
|
|
self.assertEqual(scale, X_hat.q_scale(),
|
|
message=error_message.format(name + '.scale', scale, X_hat.q_scale()))
|
|
self.assertEqual(zero_point, X_hat.q_zero_point(),
|
|
message=error_message.format(name + '.zero_point', scale,
|
|
X_hat.q_zero_point()))
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=5, max_dims=5,
|
|
min_side=5, max_side=10),
|
|
qparams=hu.qparams(dtypes=torch.quint8)),
|
|
kernel=st.sampled_from((3, 5)),
|
|
stride=st.sampled_from((None, 1, 2)),
|
|
padding=st.integers(0, 2),
|
|
ceil_mode=st.sampled_from((True, False)),
|
|
count_include_pad=st.sampled_from((True, False)),
|
|
divisor_override=st.sampled_from((None, None)))
|
|
def test_avg_pool3d(self, X, kernel, stride, padding, ceil_mode, count_include_pad, divisor_override):
|
|
"""
|
|
Note: we currently cannot test the divisor_override, because quantized op will clamp the result
|
|
within range. However, the float op will not.
|
|
"""
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
|
|
iD, iH, iW = X.shape[-3:]
|
|
oD = pool_output_shape(iD, kernel, padding, stride, dilation=1)
|
|
assume(oD > 0)
|
|
oH = pool_output_shape(iH, kernel, padding, stride, dilation=1)
|
|
assume(oH > 0)
|
|
oW = pool_output_shape(iW, kernel, padding, stride, dilation=1)
|
|
assume(oW > 0)
|
|
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
X = qX.dequantize()
|
|
# Run reference on float tensor and then quantize the result for comparison
|
|
X_ref = torch.nn.functional.avg_pool3d(
|
|
X, kernel_size=kernel, stride=stride, padding=padding,
|
|
ceil_mode=ceil_mode, count_include_pad=count_include_pad, divisor_override=divisor_override)
|
|
|
|
ops_under_test = {
|
|
"nn.functional": torch.nn.functional.avg_pool3d,
|
|
"nn.quantized.functional": torch.nn.quantized.functional.avg_pool3d
|
|
}
|
|
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
|
|
for name, op in ops_under_test.items():
|
|
qX_hat = op(qX, kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode,
|
|
count_include_pad=count_include_pad, divisor_override=divisor_override)
|
|
qX_ref = torch.quantize_per_tensor(X_ref, scale=qX_hat.q_scale(), zero_point=qX_hat.q_zero_point(),
|
|
dtype=torch_type)
|
|
self.assertEqual(qX_ref.int_repr().to(torch.double), qX_hat.int_repr().to(torch.double), atol=1.0,
|
|
message=error_message.format(name, qX_hat.int_repr(), qX_ref.int_repr()))
|
|
self.assertEqual(scale, qX_hat.q_scale(),
|
|
message=error_message.format(name + '.scale', scale, qX_hat.q_scale()))
|
|
self.assertEqual(zero_point, qX_hat.q_zero_point(),
|
|
message=error_message.format(name + '.zero_point', scale,
|
|
qX_hat.q_zero_point()))
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=5, max_dims=5,
|
|
min_side=5, max_side=10),
|
|
qparams=hu.qparams(dtypes=torch.qint8)),
|
|
kernel=st.sampled_from((4, 5)),
|
|
stride=st.sampled_from((None, 1, 2)),
|
|
padding=st.integers(0, 2),
|
|
ceil_mode=st.sampled_from((True, False)),
|
|
count_include_pad=st.sampled_from((True, False)),
|
|
divisor_override=st.sampled_from((None, None)))
|
|
def test_avg_pool3d_nhwc(self, X, kernel, stride, padding, ceil_mode, count_include_pad, divisor_override):
|
|
"""
|
|
Note: 1) we currently cannot test the divisor_override, because quantized op will clamp the result
|
|
within range. However, the float op will not.
|
|
2) we cannot test the qint32, since the float point precision is much lower than int32 for big number,
|
|
which will make the test be very flaky.
|
|
"""
|
|
X, (scale, zero_point, torch_type) = X
|
|
D, H, W = X.shape[-3:]
|
|
|
|
|
|
if X.shape[1] < 176:
|
|
X = np.repeat(X, 176 / X.shape[1], 1)
|
|
|
|
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
|
|
iD, iH, iW = X.shape[-3:]
|
|
oD = pool_output_shape(iD, kernel, padding, stride, dilation=1)
|
|
assume(oD > 0)
|
|
oH = pool_output_shape(iH, kernel, padding, stride, dilation=1)
|
|
assume(oH > 0)
|
|
oW = pool_output_shape(iW, kernel, padding, stride, dilation=1)
|
|
assume(oW > 0)
|
|
|
|
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 4, 1]))
|
|
|
|
qX = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale,
|
|
zero_point=zero_point, dtype=torch_type).permute([0, 4, 1, 2, 3])
|
|
X = qX.dequantize()
|
|
|
|
# Run reference on int_repr + round to avoid double rounding error.
|
|
X_ref = torch.nn.functional.avg_pool3d(
|
|
X, kernel_size=kernel, stride=stride, padding=padding,
|
|
ceil_mode=ceil_mode, count_include_pad=count_include_pad, divisor_override=divisor_override)
|
|
|
|
self.assertTrue(qX.stride() != sorted(qX.stride()))
|
|
ops_under_test = {
|
|
"nn.functional": torch.nn.functional.avg_pool3d,
|
|
"nn.quantized.functional": torch.nn.quantized.functional.avg_pool3d
|
|
}
|
|
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
|
|
for name, op in ops_under_test.items():
|
|
X_hat = op(qX, kernel_size=kernel, stride=stride, padding=padding, ceil_mode=ceil_mode,
|
|
count_include_pad=count_include_pad, divisor_override=divisor_override)
|
|
self.assertTrue(X_hat.stride() != sorted(X_hat.stride()))
|
|
qX_ref = torch.quantize_per_tensor(X_ref, scale=X_hat.q_scale(), zero_point=X_hat.q_zero_point(),
|
|
dtype=torch_type)
|
|
|
|
self.assertEqual(qX_ref.int_repr().to(torch.double), X_hat.int_repr().to(torch.double), atol=1.0,
|
|
message=error_message.format(name, X_hat.int_repr(), qX_ref.int_repr()))
|
|
self.assertEqual(scale, X_hat.q_scale(),
|
|
message=error_message.format(name + '.scale', scale, X_hat.q_scale()))
|
|
self.assertEqual(zero_point, X_hat.q_zero_point(),
|
|
message=error_message.format(name + '.zero_point', scale,
|
|
X_hat.q_zero_point()))
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
|
|
min_side=1, max_side=10),
|
|
qparams=hu.qparams(dtypes=torch.quint8)),
|
|
output_size_h=st.integers(1, 10),
|
|
output_size_w=st.integers(1, 10))
|
|
def test_adaptive_avg_pool2d(self, X, output_size_h, output_size_w):
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
H, W = X.shape[-2:]
|
|
assume(output_size_h <= H)
|
|
assume(output_size_w <= W)
|
|
if output_size_h == output_size_w:
|
|
output_size = output_size_h
|
|
else:
|
|
output_size = (output_size_h, output_size_w)
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
# Run reference on int_repr + round to avoid double rounding error.
|
|
X_ref = torch.nn.functional.adaptive_avg_pool2d(
|
|
qX.int_repr().to(torch.float), output_size).round()
|
|
|
|
ops_under_test = {
|
|
"nn.functional": torch.nn.functional.adaptive_avg_pool2d,
|
|
"nn.quantized.functional":
|
|
torch.nn.quantized.functional.adaptive_avg_pool2d
|
|
}
|
|
|
|
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
|
|
|
|
for name, op in ops_under_test.items():
|
|
qX_hat = op(qX, output_size=output_size)
|
|
self.assertEqual(X_ref, qX_hat.int_repr(), atol=1.0,
|
|
message=error_message.format(name, X_ref, qX_hat))
|
|
self.assertEqual(scale, qX_hat.q_scale(),
|
|
message=error_message.format(name + '.scale', scale, qX_hat.q_scale()))
|
|
self.assertEqual(zero_point, qX_hat.q_zero_point(),
|
|
message=error_message.format(name + '.zero_point', scale,
|
|
qX_hat.q_zero_point()))
|
|
|
|
"""Tests adaptive average pool operation on NHWC quantized tensors."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
|
|
min_side=1, max_side=10),
|
|
qparams=hu.qparams(dtypes=torch.qint8)),
|
|
output_size_h=st.integers(1, 10),
|
|
output_size_w=st.integers(1, 10))
|
|
def test_adaptive_avg_pool2d_nhwc(self, X, output_size_h, output_size_w):
|
|
X, (scale, zero_point, torch_type) = X
|
|
H, W = X.shape[-2:]
|
|
assume(output_size_h <= H)
|
|
assume(output_size_w <= W)
|
|
if output_size_h == output_size_w:
|
|
output_size = output_size_h
|
|
else:
|
|
output_size = (output_size_h, output_size_w)
|
|
|
|
if X.shape[1] < 176:
|
|
X = np.repeat(X, 176 / X.shape[1], 1)
|
|
|
|
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1]))
|
|
X = torch.from_numpy(X_nchw).permute([0, 3, 1, 2])
|
|
qX = torch.quantize_per_tensor(torch.from_numpy(X_nchw), scale=scale,
|
|
zero_point=zero_point, dtype=torch_type).permute([0, 3, 1, 2])
|
|
|
|
# Run reference on int_repr + round to avoid double rounding error.
|
|
X_ref = torch.nn.functional.adaptive_avg_pool2d(qX.int_repr().to(torch.double), output_size).round()
|
|
|
|
self.assertTrue(qX.stride() != sorted(qX.stride()))
|
|
|
|
ops_under_test = {
|
|
"nn.functional": torch.nn.functional.adaptive_avg_pool2d,
|
|
"nn.quantized.functional":
|
|
torch.nn.quantized.functional.adaptive_avg_pool2d
|
|
}
|
|
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
|
|
for name, op in ops_under_test.items():
|
|
X_hat = op(qX, output_size=output_size)
|
|
self.assertTrue(X_hat.stride() != sorted(X_hat.stride()))
|
|
self.assertEqual(X_ref, X_hat.int_repr(), atol=1.0,
|
|
message="{} results are off".format(name))
|
|
self.assertEqual(scale, X_hat.q_scale(),
|
|
message=error_message.format(name + '.scale', scale, X_hat.q_scale()))
|
|
self.assertEqual(zero_point, X_hat.q_zero_point(),
|
|
message=error_message.format(name + '.zero_point', scale,
|
|
X_hat.q_zero_point()))
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
|
|
min_side=1, max_side=10),
|
|
qparams=hu.qparams()),
|
|
k=st.integers(1, 10),
|
|
dim=st.integers(1, 4),
|
|
largest=st.booleans(),
|
|
sorted=st.booleans())
|
|
def test_qtopk(self, X, k, dim, largest, sorted):
|
|
X, (scale, zero_point, torch_type) = X
|
|
qX = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type)
|
|
assume(dim < X.ndim)
|
|
assume(k < X.shape[dim])
|
|
|
|
unquantized_out = torch.topk(qX.dequantize(), k, dim=dim, largest=largest, sorted=sorted)
|
|
|
|
values = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type)
|
|
indices = torch.tensor(torch.from_numpy(X)).long()
|
|
|
|
quantized_out = torch.topk(qX, k, dim=dim, largest=largest, sorted=sorted)
|
|
|
|
assert(len(unquantized_out) == len(quantized_out))
|
|
torch.testing.assert_allclose(quantized_out[0].dequantize(), unquantized_out[0])
|
|
torch.testing.assert_allclose(quantized_out[1], unquantized_out[1])
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
|
|
min_side=1, max_side=10),
|
|
qparams=hu.qparams()),
|
|
k=st.integers(1, 10),
|
|
dim=st.integers(1, 4),
|
|
largest=st.booleans(),
|
|
sorted=st.booleans())
|
|
def test_qtopk_nhwc(self, X, k, dim, largest, sorted):
|
|
# X is NHWC, we permute to view as NCHW but keep NHWC in memory
|
|
X, (scale, zero_point, torch_type) = X
|
|
qX = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type).permute([0, 3, 1, 2])
|
|
X = np.transpose(X, [0, 3, 1, 2])
|
|
assume(dim < X.ndim)
|
|
assume(k < X.shape[dim])
|
|
|
|
unquantized_out = torch.topk(qX.dequantize(), k, dim=dim, largest=largest, sorted=sorted)
|
|
|
|
values = torch.quantize_per_tensor(torch.from_numpy(X), scale, zero_point, torch_type)
|
|
indices = torch.tensor(torch.from_numpy(X)).long()
|
|
|
|
quantized_out = torch.topk(qX, k, dim=dim, largest=largest, sorted=sorted)
|
|
|
|
assert(len(unquantized_out) == len(quantized_out))
|
|
torch.testing.assert_allclose(quantized_out[0].dequantize(), unquantized_out[0])
|
|
torch.testing.assert_allclose(quantized_out[1], unquantized_out[1])
|
|
|
|
|
|
"""Tests quantize concatenation (both fused and not)."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=4,
|
|
min_side=1, max_side=10),
|
|
qparams=hu.qparams()),
|
|
num=st.integers(1, 4),
|
|
dim=st.integers(1, 4),
|
|
relu=st.booleans())
|
|
def test_cat(self, X, num, dim, relu):
|
|
tensors_q = []
|
|
tensors_ref = []
|
|
X, (scale, zero_point, torch_type) = X
|
|
assume(dim < X.ndim)
|
|
X = torch.from_numpy(X)
|
|
new_shape = np.array(X.shape)
|
|
new_shape[dim] = 0
|
|
for idx in range(num):
|
|
tensors_q.append(torch.quantize_per_tensor(X, scale, zero_point,
|
|
torch_type))
|
|
tensors_ref.append(X)
|
|
new_shape[dim] += tensors_ref[-1].shape[dim]
|
|
|
|
cat_ref = torch.cat(tensors_ref, dim=dim)
|
|
cat_ref = torch.quantize_per_tensor(cat_ref, scale, zero_point, torch_type)
|
|
cat_ref = cat_ref.dequantize()
|
|
|
|
if relu:
|
|
cat_ref = F.relu(cat_ref)
|
|
q_cat_op = torch.ops.quantized.cat_relu
|
|
q_cat_out_op = torch.ops.quantized.cat_relu_out
|
|
else:
|
|
q_cat_op = torch.ops.quantized.cat
|
|
q_cat_out_op = torch.ops.quantized.cat_out
|
|
|
|
cat_q = q_cat_op(tensors_q, dim=dim, scale=scale,
|
|
zero_point=zero_point)
|
|
cat_q = cat_q.dequantize()
|
|
np.testing.assert_equal(cat_ref.numpy(), cat_q.numpy())
|
|
|
|
cat_q_out = torch._empty_affine_quantized(
|
|
list(new_shape), scale=scale,
|
|
zero_point=zero_point, dtype=torch_type)
|
|
q_cat_out_op(tensors_q, dim=dim, out=cat_q_out)
|
|
cat_q_out = cat_q_out.dequantize()
|
|
np.testing.assert_equal(cat_ref.numpy(), cat_q_out.numpy())
|
|
|
|
# Test the cat on per-channel quantized tensor.
|
|
ch_axis = 1
|
|
scales = torch.from_numpy(np.array([1.0] * X.shape[ch_axis]))
|
|
scales = scales.to(torch.float64)
|
|
zero_points = torch.from_numpy(np.array([0] * X.shape[ch_axis]))
|
|
zero_points = zero_points.to(torch.long)
|
|
tensors_q[0] = torch.quantize_per_channel(
|
|
X, scales, zero_points, axis=ch_axis, dtype=torch_type)
|
|
with self.assertRaisesRegex(RuntimeError, "supported.*cat"):
|
|
cat_q = q_cat_op(tensors_q, dim=ch_axis, scale=scale,
|
|
zero_point=zero_point)
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
|
|
min_side=5, max_side=10),
|
|
qparams=hu.qparams()),
|
|
size=st.sampled_from((1, 3, 5, 10)),
|
|
mode=st.sampled_from(("bilinear", "nearest")),
|
|
scale_factor=st.sampled_from((None, 1.5, 2.0)),
|
|
align_corners=st.sampled_from((True, False)),
|
|
nhwc_layout=st.sampled_from((True, False)))
|
|
def test_interpolate(self, X, size, mode, scale_factor, align_corners, nhwc_layout):
|
|
"""
|
|
This test cover upsample_nearest2d and upsample_bilinear2d
|
|
"""
|
|
X, (scale, zero_point, torch_type) = X
|
|
H, W = X.shape[-2:]
|
|
|
|
if scale_factor is not None:
|
|
size = None
|
|
if mode == "nearest":
|
|
align_corners = None
|
|
|
|
if nhwc_layout:
|
|
if X.shape[1] < 176:
|
|
X = np.repeat(X, 176 / X.shape[1], 1)
|
|
|
|
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 1]))
|
|
X = torch.from_numpy(X_nchw).permute([0, 3, 1, 2])
|
|
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type).permute([0, 3, 1, 2])
|
|
else:
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
X_ref = torch.nn.functional.interpolate(
|
|
qX.int_repr().to(torch.float), size=size, scale_factor=scale_factor,
|
|
mode=mode, align_corners=align_corners)
|
|
|
|
ops_under_test = {
|
|
"nn.functional": torch.nn.functional.interpolate,
|
|
"nn.quantized.functional": torch.nn.quantized.functional.interpolate
|
|
}
|
|
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
|
|
for name, op in ops_under_test.items():
|
|
qX_hat = op(qX, size=size, scale_factor=scale_factor,
|
|
mode=mode, align_corners=align_corners)
|
|
self.assertEqual(X_ref, qX_hat.int_repr(), atol=1.0,
|
|
message="{} results are off".format(name, qX_hat.int_repr(), X_ref))
|
|
self.assertEqual(scale, qX_hat.q_scale(),
|
|
message=error_message.format(name + '.scale', scale, qX_hat.q_scale()))
|
|
self.assertEqual(zero_point, qX_hat.q_zero_point(),
|
|
message=error_message.format(name + '.zero_point', scale,
|
|
qX_hat.q_zero_point()))
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=5, max_dims=5,
|
|
min_side=5, max_side=10),
|
|
qparams=hu.qparams()),
|
|
size=st.sampled_from((1, 3, 5, 5, 10)),
|
|
scale_factor=st.sampled_from((None, 1.5, 2.0)),
|
|
align_corners=st.sampled_from((True, False)),
|
|
nhwc_layout=st.sampled_from((True, False)))
|
|
def test_interpolate3d(self, X, size, scale_factor, align_corners, nhwc_layout):
|
|
"""
|
|
This test cover upsample_nearest2d and upsample_bilinear2d
|
|
"""
|
|
X, (scale, zero_point, torch_type) = X
|
|
D, H, W = X.shape[-3:]
|
|
mode = "nearest"
|
|
if scale_factor is not None:
|
|
size = None
|
|
if mode == "nearest":
|
|
align_corners = None
|
|
|
|
if nhwc_layout:
|
|
if X.shape[1] < 176:
|
|
X = np.repeat(X, 176 / X.shape[1], 1)
|
|
|
|
X_nchw = np.ascontiguousarray(X.transpose([0, 2, 3, 4, 1]))
|
|
X = torch.from_numpy(X_nchw).permute([0, 4, 1, 2, 3])
|
|
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type).permute([0, 4, 1, 2, 3])
|
|
else:
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
X_ref = torch.nn.functional.interpolate(
|
|
qX.int_repr().to(torch.float), size=size, scale_factor=scale_factor,
|
|
mode=mode, align_corners=align_corners)
|
|
|
|
ops_under_test = {
|
|
"nn.functional": torch.nn.functional.interpolate,
|
|
"nn.quantized.functional": torch.nn.quantized.functional.interpolate
|
|
}
|
|
|
|
error_message = r"Results are off for {}:\n\tExpected:\n{}\n\tGot:\n{}"
|
|
for name, op in ops_under_test.items():
|
|
qX_hat = op(qX, size=size, scale_factor=scale_factor,
|
|
mode=mode, align_corners=align_corners)
|
|
self.assertEqual(X_ref, qX_hat.int_repr(), atol=1.0,
|
|
message="{} results are off".format(name, qX_hat.int_repr(), X_ref))
|
|
self.assertEqual(scale, qX_hat.q_scale(),
|
|
message=error_message.format(name + '.scale', scale, qX_hat.q_scale()))
|
|
self.assertEqual(zero_point, qX_hat.q_zero_point(),
|
|
message=error_message.format(name + '.zero_point', scale,
|
|
qX_hat.q_zero_point()))
|
|
|
|
"""Tests quantize concatenation (both fused and not)."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
|
|
min_side=1, max_side=10),
|
|
qparams=hu.qparams()),
|
|
relu=st.booleans())
|
|
def test_cat_nhwc(self, X, relu):
|
|
# X is NHWC
|
|
X, (scale, zero_point, torch_type) = X
|
|
|
|
# Tile out X so # channels is > 64
|
|
X = np.repeat(X, 70 / X.shape[3], 3)
|
|
X = torch.from_numpy(np.ascontiguousarray(X))
|
|
Y = X.clone()
|
|
Y = torch.from_numpy(np.ascontiguousarray(Y))
|
|
# Here, we quantize and get quantized tensors in NHWC for both dims and strides. The
|
|
# permute switches it so that the tensor looks like NCHW but it laid out in memory as
|
|
# NHWC.
|
|
qX = torch.quantize_per_tensor(X, scale, zero_point, torch_type).permute([0, 3, 1, 2])
|
|
qY = torch.quantize_per_tensor(Y, scale, zero_point, torch_type).permute([0, 3, 1, 2])
|
|
|
|
ref = torch.cat([qX.dequantize(), qY.dequantize()], dim=1)
|
|
if relu:
|
|
ref[ref < 0] = 0.0
|
|
ref = torch.quantize_per_tensor(ref, scale=scale, zero_point=zero_point, dtype=torch_type)
|
|
|
|
if relu:
|
|
out = torch.ops.quantized.cat_relu(
|
|
[qX, qY], dim=1, scale=scale, zero_point=zero_point)
|
|
else:
|
|
out = torch.ops.quantized.cat([qX, qY], dim=1, scale=scale, zero_point=zero_point)
|
|
|
|
torch.testing.assert_allclose(out.dequantize(), ref.dequantize())
|
|
self.assertNotEqual(out.stride(), sorted(out.stride()))
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=3, max_dims=3,
|
|
min_side=1, max_side=2),
|
|
qparams=hu.qparams()),
|
|
dim=st.integers(1, 2))
|
|
def test_mean(self, X, dim):
|
|
X, (scale, zero_point, torch_type) = X
|
|
qX = torch.quantize_per_tensor(torch.tensor(X).float(), scale, zero_point, torch_type)
|
|
|
|
Y = torch.mean(qX.dequantize(), dim)
|
|
Y = torch.quantize_per_tensor(Y, scale, zero_point, torch_type).dequantize()
|
|
qY = torch.mean(qX, dim)
|
|
|
|
self.assertEqual(Y, qY.dequantize())
|
|
|
|
"""Tests the correctness of the quantized equal op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams()),
|
|
X2=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams()),
|
|
X_per_channel=st.booleans(),
|
|
X2_per_channel=st.booleans())
|
|
def test_equal(self, X, X2, X_per_channel, X2_per_channel):
|
|
X, X_params = X
|
|
(scale, zero_point, torch_type) = X_params
|
|
X2, X2_params = X2
|
|
(scale2, zero_point2, torch_type2) = X2_params
|
|
|
|
X = torch.from_numpy(X)
|
|
if X_per_channel:
|
|
X_scheme = 'per_channel'
|
|
channels = X.shape[-1]
|
|
qX = torch.quantize_per_channel(
|
|
X,
|
|
scales=torch.tensor([scale] * channels),
|
|
zero_points=torch.tensor([zero_point] * channels),
|
|
dtype=torch_type,
|
|
axis=X.ndim - 1)
|
|
else:
|
|
X_scheme = 'per_tensor'
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
X2 = torch.from_numpy(X2)
|
|
if X2_per_channel:
|
|
X2_scheme = 'per_channel'
|
|
channels = X2.shape[-1]
|
|
qX2 = torch.quantize_per_channel(
|
|
X2,
|
|
scales=torch.tensor([scale2] * channels),
|
|
zero_points=torch.tensor([zero_point2] * channels),
|
|
dtype=torch_type2,
|
|
axis=X2.ndim - 1)
|
|
else:
|
|
X2_scheme = 'per_tensor'
|
|
qX2 = torch.quantize_per_tensor(X2, scale=scale2, zero_point=zero_point2,
|
|
dtype=torch_type2)
|
|
|
|
def equal_ref(qX, qX2):
|
|
if qX.qscheme() != qX2.qscheme():
|
|
return False
|
|
if qX.shape != qX2.shape:
|
|
return False
|
|
if qX.dtype != qX2.dtype:
|
|
return False
|
|
if qX.qscheme() == torch.per_tensor_affine:
|
|
if qX.q_scale() != qX2.q_scale():
|
|
return False
|
|
if qX.q_zero_point() != qX2.q_zero_point():
|
|
return False
|
|
elif qX.qscheme() == torch.per_channel_affine:
|
|
if (qX.q_per_channel_scales() !=
|
|
qX2.q_per_channel_scales()).any():
|
|
return False
|
|
if (qX.q_per_channel_zero_points() !=
|
|
qX2.q_per_channel_zero_points()).any():
|
|
return False
|
|
else:
|
|
raise NotImplementedError("Don't know what to do with",
|
|
qX.qscheme())
|
|
if (qX.int_repr().to(float) != qX2.int_repr().to(float)).any():
|
|
return False
|
|
return True
|
|
|
|
self.assertEqual(qX.equal(qX), equal_ref(qX, qX))
|
|
self.assertEqual(qX.equal(qX2), equal_ref(qX, qX2))
|
|
|
|
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=4,
|
|
min_side=1, max_side=32),
|
|
qparams=hu.qparams()),
|
|
Y_scale=st.floats(0.2, 2.6),
|
|
Y_zero_point=st.integers(0, 5))
|
|
def test_batch_norm2d(self, X, Y_scale, Y_zero_point):
|
|
if "fbgemm" not in torch.backends.quantized.supported_engines:
|
|
return
|
|
|
|
with override_quantized_engine("fbgemm"):
|
|
X, (scale_x, zero_point_x, dtype_x) = X
|
|
|
|
X = torch.from_numpy(X)
|
|
c = X.shape[1]
|
|
|
|
mean = torch.rand(c).float()
|
|
var = torch.rand(c).float()
|
|
weight = torch.rand(c).float()
|
|
bias = torch.rand(c).float()
|
|
eps = 0.001
|
|
qx = torch.quantize_per_tensor(X, scale_x, zero_point_x, dtype_x)
|
|
qy = torch.ops.quantized.batch_norm2d(qx, weight, bias, mean, var, eps, Y_scale, Y_zero_point)
|
|
|
|
float_ref = F.batch_norm(qx.dequantize(), weight=weight, bias=bias,
|
|
running_mean=mean, running_var=var, training=False, momentum=0, eps=eps)
|
|
quantize_ref = torch.quantize_per_tensor(float_ref, Y_scale, Y_zero_point, dtype_x)
|
|
self.assertEqual(qy.int_repr().numpy(), quantize_ref.int_repr().numpy())
|
|
|
|
@unittest.skip("Takes 20+ min to finish in many configurations")
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=4, max_dims=5,
|
|
min_side=1, max_side=32),
|
|
qparams=hu.qparams()),
|
|
Y_scale=st.floats(0.2, 2.6),
|
|
Y_zero_point=st.integers(0, 5))
|
|
def test_batch_norm2d_relu(self, X, Y_scale, Y_zero_point):
|
|
if "fbgemm" not in torch.backends.quantized.supported_engines:
|
|
return
|
|
|
|
with override_quantized_engine("fbgemm"):
|
|
X, (scale_x, zero_point_x, dtype_x) = X
|
|
|
|
X = torch.from_numpy(X)
|
|
c = X.shape[1]
|
|
|
|
mean = torch.rand(c).float()
|
|
var = torch.rand(c).float()
|
|
weight = torch.rand(c).float()
|
|
bias = torch.rand(c).float()
|
|
eps = 0.001
|
|
qx = torch.quantize_per_tensor(X, scale_x, zero_point_x, dtype_x)
|
|
if len(X.shape) == 4:
|
|
qy = torch.ops.quantized.batch_norm2d_relu(qx, weight, bias, mean, var, eps, Y_scale, Y_zero_point)
|
|
else:
|
|
qy = torch.ops.quantized.batch_norm3d_relu(qx, weight, bias, mean, var, eps, Y_scale, Y_zero_point)
|
|
|
|
|
|
float_ref = F.batch_norm(qx.dequantize(), weight=weight, bias=bias,
|
|
running_mean=mean, running_var=var, training=False, momentum=0, eps=eps).numpy()
|
|
|
|
float_ref_relu = float_ref.copy()
|
|
float_ref_relu[float_ref < 0] = 0
|
|
quantize_ref = torch.quantize_per_tensor(torch.from_numpy(float_ref_relu), Y_scale, Y_zero_point, dtype_x)
|
|
self.assertEqual(qy.int_repr().numpy(), quantize_ref.int_repr().numpy())
|
|
|
|
@unittest.skip("Takes 20+ min to finish in many configurations")
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(min_dims=5, max_dims=5,
|
|
min_side=1, max_side=32),
|
|
qparams=hu.qparams()),
|
|
Y_scale=st.floats(0.2, 2.6),
|
|
Y_zero_point=st.integers(0, 5))
|
|
def test_batch_norm3d(self, X, Y_scale, Y_zero_point):
|
|
if "fbgemm" not in torch.backends.quantized.supported_engines:
|
|
return
|
|
|
|
with override_quantized_engine("fbgemm"):
|
|
X, (scale_x, zero_point_x, dtype_x) = X
|
|
|
|
X = torch.from_numpy(X)
|
|
c = X.shape[1]
|
|
|
|
mean = torch.rand(c).float()
|
|
var = torch.rand(c).float()
|
|
weight = torch.rand(c).float()
|
|
bias = torch.rand(c).float()
|
|
eps = 0.001
|
|
qx = torch.quantize_per_tensor(X, scale_x, zero_point_x, dtype_x)
|
|
qy = torch.ops.quantized.batch_norm3d(qx, weight, bias, mean, var, eps, Y_scale, Y_zero_point)
|
|
|
|
float_ref = F.batch_norm(qx.dequantize(), weight=weight, bias=bias,
|
|
running_mean=mean, running_var=var, training=False, momentum=0, eps=eps)
|
|
quantize_ref = torch.quantize_per_tensor(float_ref, Y_scale, Y_zero_point, dtype_x)
|
|
self.assertEqual(qy.int_repr().numpy(), quantize_ref.int_repr().numpy())
|
|
|
|
@unittest.skipUnless('fbgemm' in torch.backends.quantized.supported_engines,
|
|
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
|
|
" with instruction set support avx2 or newer.")
|
|
class TestDynamicQuantizedLinear(TestCase):
|
|
"""Tests the correctness of the dynamic quantized linear and linear_relu op."""
|
|
@given(
|
|
batch_size=st.integers(1, 4),
|
|
input_channels=st.integers(16, 32),
|
|
output_channels=st.integers(4, 8),
|
|
use_bias=st.booleans(),
|
|
use_relu=st.booleans(),
|
|
use_multi_dim_input=st.booleans(),
|
|
use_channelwise=st.booleans(),
|
|
qengine=st.sampled_from(("qnnpack", "fbgemm")))
|
|
def test_qlinear(self, batch_size, input_channels, output_channels,
|
|
use_bias, use_relu, use_multi_dim_input, use_channelwise, qengine):
|
|
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
return
|
|
if qengine == 'qnnpack':
|
|
if IS_PPC or TEST_WITH_UBSAN or IS_MACOS:
|
|
return
|
|
use_channelwise = False
|
|
use_relu = False
|
|
|
|
with override_quantized_engine(qengine):
|
|
qlinear_prepack = torch.ops.quantized.linear_prepack
|
|
if use_relu:
|
|
qlinear_dynamic = torch.ops.quantized.linear_relu_dynamic
|
|
else:
|
|
qlinear_dynamic = torch.ops.quantized.linear_dynamic
|
|
|
|
if use_multi_dim_input:
|
|
batch_size *= 3 # Test the multi-dim input tensor
|
|
|
|
X_scale = 1.0
|
|
X_zp = 0
|
|
X_value_min = 0
|
|
X_value_max = 255
|
|
X_q0 = np.round(np.random.rand(batch_size, input_channels) *
|
|
(X_value_max - X_value_min)
|
|
+ X_value_min
|
|
).astype(np.uint8)
|
|
X_q0 = np.round(np.random.rand(batch_size, input_channels) *
|
|
(X_value_max - X_value_min) + X_value_min).astype(np.uint8)
|
|
X_q0[0, 0] = X_value_min
|
|
X_q0[0, 1] = X_value_max
|
|
|
|
# W_scale = 1.0
|
|
# W_zp = 0
|
|
W_scales = np.ones(output_channels)
|
|
W_zps = np.zeros(output_channels).astype(np.int)
|
|
W_value_min = -128
|
|
W_value_max = 127
|
|
W_q0 = np.round(
|
|
np.random.rand(output_channels, input_channels)
|
|
* (W_value_max - W_value_min)
|
|
+ W_value_min
|
|
).astype(np.int8)
|
|
W_q0[0, 0] = W_value_min
|
|
W_q0[1, 0] = W_value_max
|
|
|
|
b_value_min = -10
|
|
b_value_max = 10
|
|
b_q0 = np.round(
|
|
np.random.rand(output_channels) *
|
|
(b_value_max - b_value_min) + b_value_min
|
|
).astype(np.int32) if use_bias else None
|
|
|
|
if qengine == 'fbgemm':
|
|
avoid_vpmaddubsw_overflow_linear(
|
|
batch_size,
|
|
input_channels,
|
|
output_channels,
|
|
X_q0,
|
|
X_value_min,
|
|
X_value_max,
|
|
W_q0,
|
|
W_value_min,
|
|
W_value_max,
|
|
)
|
|
|
|
X_fp32 = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float)
|
|
if use_multi_dim_input:
|
|
X_fp32 = X_fp32.view(3, int(batch_size / 3), input_channels)
|
|
|
|
# W_scale, W_zp = _calculate_dynamic_qparams(W_fp32, torch.qint8)
|
|
# We currently only check the case where W_scale = 1.0, W_zp = 0.
|
|
|
|
if use_channelwise:
|
|
W_fp32 = torch.from_numpy(_dequantize(W_q0, W_scales.reshape(
|
|
(-1, 1)), W_zps.reshape((-1, 1)))).to(dtype=torch.float)
|
|
W_q = torch.quantize_per_channel(W_fp32, scales=torch.from_numpy(W_scales),
|
|
zero_points=torch.from_numpy(W_zps), axis=0, dtype=torch.qint8)
|
|
b_fp32 = torch.from_numpy(
|
|
_dequantize(b_q0, X_scale * W_scales, 0)
|
|
).to(dtype=torch.float) if use_bias else None
|
|
else:
|
|
W_fp32 = torch.from_numpy(_dequantize(
|
|
W_q0, W_scales[0], W_zps[0])).to(dtype=torch.float)
|
|
W_q = torch.quantize_per_tensor(W_fp32, scale=W_scales[0], zero_point=(
|
|
W_zps[0].astype(int).item()), dtype=torch.qint8)
|
|
b_fp32 = torch.from_numpy(
|
|
_dequantize(b_q0, X_scale * int(W_scales[0].item()), 0)
|
|
).to(dtype=torch.float) if use_bias else None
|
|
|
|
# Observe X_fp32 and determine X_scale and X_zero_point, this should match
|
|
# internals of dynamic linear.
|
|
X_scale, X_zp = _calculate_dynamic_qparams(X_fp32, torch.quint8)
|
|
X_q = torch.quantize_per_tensor(X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
|
|
|
|
# Weight prepacking operator for dynamic quantized Linear
|
|
W_prepack = qlinear_prepack(W_q, b_fp32)
|
|
# Dynamic quantized Linear operator with prepacked weight
|
|
Y_fp32 = qlinear_dynamic(X_q.dequantize(), W_prepack)
|
|
# Y_fp32 = qlinear_dynamic(X_fp32, W_prepack, b_fp32)
|
|
|
|
Y_fp32_ref = F.linear(X_q.dequantize(), W_q.dequantize(), b_fp32)
|
|
# Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
|
|
# if use_multi_dim_input:
|
|
# Y_fp32_ref = Y_fp32_ref.view(3, int(batch_size / 3), output_channels)
|
|
|
|
if use_relu:
|
|
Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0
|
|
|
|
self.assertEqual(Y_fp32, Y_fp32_ref,
|
|
message="torch.ops.quantized.linear_dynamic (fbgemm) results are off")
|
|
|
|
"""Tests the correctness of the legacy dynamic quantized linear op."""
|
|
@given(
|
|
batch_size=st.integers(1, 4),
|
|
input_channels=st.integers(16, 32),
|
|
output_channels=st.integers(4, 8),
|
|
)
|
|
def test_qlinear_legacy(self, batch_size, input_channels, output_channels):
|
|
X_scale = 1.0
|
|
X_zp = 0
|
|
X_value_min = 0
|
|
X_value_max = 255
|
|
X_q0 = np.round(np.random.rand(batch_size, input_channels) * (
|
|
X_value_max - X_value_min) + X_value_min
|
|
).astype(np.uint8)
|
|
X_q0[0, 0] = X_value_min
|
|
X_q0[0, 1] = X_value_max
|
|
|
|
W_scale = 1.0
|
|
W_zp = 0
|
|
W_value_min = -128
|
|
W_value_max = 127
|
|
W_q0 = np.round(
|
|
np.random.rand(output_channels, input_channels)
|
|
* (W_value_max - W_value_min)
|
|
+ W_value_min
|
|
).astype(np.int8)
|
|
W_q0[0, 0] = W_value_min
|
|
W_q0[1, 0] = W_value_max
|
|
|
|
b_value_min = -10
|
|
b_value_max = 10
|
|
b_q0 = np.round(
|
|
np.random.rand(output_channels) * (b_value_max - b_value_min) +
|
|
b_value_min
|
|
).astype(np.int32)
|
|
|
|
avoid_vpmaddubsw_overflow_linear(
|
|
batch_size,
|
|
input_channels,
|
|
output_channels,
|
|
X_q0,
|
|
X_value_min,
|
|
X_value_max,
|
|
W_q0,
|
|
W_value_min,
|
|
W_value_max,
|
|
)
|
|
|
|
X_fp32 = torch.from_numpy(_dequantize(X_q0, X_scale, X_zp)).to(dtype=torch.float)
|
|
W_fp32 = torch.from_numpy(_dequantize(W_q0, W_scale, W_zp)).to(dtype=torch.float)
|
|
b_fp32 = torch.from_numpy(
|
|
_dequantize(b_q0, X_scale * W_scale, 0)
|
|
).to(dtype=torch.float)
|
|
|
|
W_scale, W_zp = _calculate_dynamic_qparams(W_fp32, torch.qint8)
|
|
W_q = torch.quantize_per_tensor(W_fp32, scale=W_scale, zero_point=W_zp, dtype=torch.qint8)
|
|
|
|
# Observe X_fp32 and determine X_scale and X_zero_point, this should match
|
|
# internals of dynamic linear.
|
|
X_scale, X_zp = _calculate_dynamic_qparams(X_fp32, torch.quint8)
|
|
X_q = torch.quantize_per_tensor(X_fp32, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
|
|
|
|
W_int8, col_offsets, W_scale, W_zp = torch.fbgemm_linear_quantize_weight(W_q.dequantize())
|
|
W_prepack = torch.fbgemm_pack_quantized_matrix(W_int8.clone(), W_int8.size(1), W_int8.size(0))
|
|
# Quantized Linear operator with prepacked weight
|
|
Y_fp32 = torch.fbgemm_linear_int8_weight(
|
|
X_q.dequantize(), W_q.dequantize(), W_prepack, col_offsets,
|
|
W_scale, W_zp, b_fp32)
|
|
|
|
Y_fp32_ref = F.linear(X_q.dequantize(), W_q.dequantize(), b_fp32)
|
|
# Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
|
|
|
|
self.assertEqual(Y_fp32, Y_fp32_ref,
|
|
message="torch.ops.quantized.fbgemm_linear_dynamic results are off")
|
|
|
|
class TestQuantizedLinear(unittest.TestCase):
|
|
"""Tests the correctness of the quantized linear and linear_relu op."""
|
|
@given(batch_size=st.integers(1, 4),
|
|
input_channels=st.integers(16, 32),
|
|
output_channels=st.integers(4, 8),
|
|
use_bias=st.booleans(),
|
|
use_relu=st.booleans(),
|
|
use_multi_dim_input=st.booleans(),
|
|
use_channelwise=st.booleans(),
|
|
qengine=st.sampled_from(("qnnpack", "fbgemm")))
|
|
def test_qlinear(self, batch_size, input_channels, output_channels, use_bias,
|
|
use_relu, use_multi_dim_input, use_channelwise, qengine):
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
return
|
|
decimal_val = 4
|
|
if qengine == 'qnnpack':
|
|
# QNNPACK qlinear is flaky on MACOS. Issue #27326
|
|
if IS_PPC or TEST_WITH_UBSAN or IS_MACOS:
|
|
return
|
|
use_channelwise = False
|
|
use_multi_dim_input = False
|
|
# QNNPACK supports uint8 in the kernels. In the op we shift the int8
|
|
# weight values to uint8 to be on par with fbgemm. However, this causes
|
|
# some rounding issues in rare cases. So, we relax the check to allow
|
|
# off by one results.
|
|
decimal_val = 0
|
|
|
|
with override_quantized_engine(qengine):
|
|
qlinear_prepack = torch.ops.quantized.linear_prepack
|
|
if use_relu:
|
|
qlinear = torch.ops.quantized.linear_relu
|
|
else:
|
|
qlinear = torch.ops.quantized.linear
|
|
if use_multi_dim_input:
|
|
batch_size *= 3 # Test the multi-dim input tensor
|
|
X_scale = 1.5
|
|
X_zp = 5
|
|
X_value_min = 0
|
|
X_value_max = 225
|
|
X_q0 = np.round(
|
|
np.random.rand(batch_size, input_channels) *
|
|
(X_value_max - X_value_min)
|
|
+ X_value_min
|
|
).astype(np.uint8)
|
|
W_scales = np.random.rand(output_channels)
|
|
W_zps = np.round(np.random.rand(output_channels) * 100 - 50).astype(np.int)
|
|
W_value_min = -128
|
|
W_value_max = 127
|
|
W_q0 = np.round(
|
|
np.random.rand(output_channels, input_channels)
|
|
* (W_value_max - W_value_min)
|
|
+ W_value_min
|
|
).astype(np.int8)
|
|
b_value_min = -10
|
|
b_value_max = 10
|
|
b_q0 = np.round(
|
|
np.random.rand(output_channels) *
|
|
(b_value_max - b_value_min) + b_value_min
|
|
).astype(np.int32) if use_bias else None
|
|
avoid_vpmaddubsw_overflow_linear(
|
|
batch_size,
|
|
input_channels,
|
|
output_channels,
|
|
X_q0,
|
|
X_value_min,
|
|
X_value_max,
|
|
W_q0,
|
|
W_value_min,
|
|
W_value_max,
|
|
)
|
|
X = torch.from_numpy(_dequantize(
|
|
X_q0, X_scale, X_zp)).to(dtype=torch.float)
|
|
X_q = torch.quantize_per_tensor(
|
|
X, scale=X_scale, zero_point=X_zp, dtype=torch.quint8)
|
|
if use_channelwise:
|
|
W = torch.from_numpy(_dequantize(W_q0, W_scales.reshape(
|
|
(-1, 1)), W_zps.reshape((-1, 1)))).to(dtype=torch.float)
|
|
W_q = torch.quantize_per_channel(W, scales=torch.from_numpy(W_scales),
|
|
zero_points=torch.from_numpy(W_zps), axis=0, dtype=torch.qint8)
|
|
b = torch.from_numpy(_dequantize(
|
|
b_q0, X_scale * W_scales, 0)).to(dtype=torch.float) if use_bias else None
|
|
b_q = torch.quantize_per_channel(b, scales=torch.from_numpy(X_scale * W_scales),
|
|
zero_points=torch.zeros(output_channels, dtype=torch.long),
|
|
axis=0, dtype=torch.qint32) if use_bias else None
|
|
else:
|
|
W = torch.from_numpy(_dequantize(
|
|
W_q0, W_scales[0], W_zps[0])).to(dtype=torch.float)
|
|
W_q = torch.quantize_per_tensor(W, scale=W_scales[0], zero_point=(
|
|
W_zps[0].astype(int).item()), dtype=torch.qint8)
|
|
b = torch.from_numpy(_dequantize(
|
|
b_q0, X_scale * (W_scales[0].item()), 0)).to(dtype=torch.float) if use_bias else None
|
|
b_q = torch.quantize_per_tensor(
|
|
b, scale=X_scale * (W_scales[0].item()), zero_point=0, dtype=torch.qint32) if use_bias else None
|
|
# Compare X_scale * W_scale * input_channels * X_value_max * W_value_max with
|
|
# Y_scale * 255 (max for uint8).
|
|
Y_scale = 125.1234
|
|
Y_zp = 5
|
|
# Weight prepacking operator for quantized Linear
|
|
float_bias = b if use_bias else None
|
|
W_prepack = qlinear_prepack(W_q, float_bias)
|
|
if use_multi_dim_input:
|
|
X_q = X_q.view(3, int(batch_size / 3), input_channels)
|
|
# Quantized Linear operator with prepacked weight
|
|
Y_q = qlinear(X_q, W_prepack, Y_scale, Y_zp)
|
|
if not use_channelwise:
|
|
# Test the per-tensor quantization only
|
|
# Reference quantized Linear operator
|
|
Y_q_ref = qlinear_ref(X_q0, X_scale, X_zp, W_q0,
|
|
W_scales[0], W_zps[0], b_q0, Y_scale, Y_zp)
|
|
if use_relu:
|
|
Y_q_ref[Y_q_ref < Y_zp] = Y_zp
|
|
if use_multi_dim_input:
|
|
Y_q_ref = np.reshape(
|
|
Y_q_ref, (3, int(batch_size / 3), output_channels))
|
|
# Assert equal
|
|
np.testing.assert_array_almost_equal(Y_q_ref, Y_q.int_repr().numpy(), decimal=decimal_val)
|
|
# Test both per-tensor and per-channel quantization
|
|
# Reference quantized result from PyTorch Linear operator
|
|
W_fp32 = W_q.dequantize().to(dtype=torch.float)
|
|
X_fp32 = X_q.dequantize().to(dtype=torch.float)
|
|
b_fp32 = b_q.dequantize().to(dtype=torch.float) if use_bias else None
|
|
Y_fp32_ref = F.linear(X_fp32, W_fp32, b_fp32)
|
|
if use_relu:
|
|
Y_fp32_ref[Y_fp32_ref < 0.0] = 0.0
|
|
Y_q_ref2 = torch.quantize_per_tensor(
|
|
Y_fp32_ref, Y_scale, Y_zp, torch.quint8)
|
|
# Assert equal
|
|
np.testing.assert_array_almost_equal(
|
|
Y_q_ref2.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=decimal_val)
|
|
|
|
"""Tests the correctness of the quantized::linear_unpack op."""
|
|
@given(W=hu.tensor(shapes=hu.array_shapes(2, 2,),
|
|
qparams=hu.qparams(dtypes=torch.qint8)),
|
|
use_channelwise=st.booleans(),
|
|
qengine=st.sampled_from(("qnnpack", "fbgemm")))
|
|
def test_qlinear_unpack(self, W, use_channelwise, qengine):
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
return
|
|
if qengine == 'qnnpack':
|
|
if IS_PPC or TEST_WITH_UBSAN:
|
|
return
|
|
use_channelwise = False
|
|
|
|
with override_quantized_engine(qengine):
|
|
W, (W_scale, W_zp, torch_type) = W
|
|
if use_channelwise:
|
|
output_channels = W.shape[0]
|
|
W_scales = torch.rand(output_channels).to(torch.double)
|
|
W_zps = torch.round(torch.rand(output_channels)
|
|
* 100 - 50).to(torch.int64)
|
|
qlinear_prepack = torch.ops.quantized.linear_prepack
|
|
qlinear_unpack = torch.ops.quantized.linear_unpack
|
|
|
|
W = torch.from_numpy(W)
|
|
if use_channelwise:
|
|
W_q = torch.quantize_per_channel(
|
|
W, W_scales, W_zps, 0, dtype=torch_type)
|
|
else:
|
|
W_q = torch.quantize_per_tensor(W, scale=W_scale, zero_point=W_zp,
|
|
dtype=torch_type)
|
|
# Weight prepacking operator for quantized Linear
|
|
W_prepack = qlinear_prepack(W_q)
|
|
# Weight unpack operator for quantized Linear (Used for serialization)
|
|
W_q_origin = qlinear_unpack(W_prepack)[0]
|
|
# Assert equal
|
|
np.testing.assert_equal(W_q.int_repr(), W_q_origin.int_repr().numpy())
|
|
if use_channelwise:
|
|
np.testing.assert_array_almost_equal(np.float32(W_q.q_per_channel_scales().numpy()),
|
|
np.float32(
|
|
W_q_origin.q_per_channel_scales().numpy()),
|
|
decimal=4)
|
|
np.testing.assert_equal(W_q.q_per_channel_zero_points(
|
|
).numpy(), W_q_origin.q_per_channel_zero_points().numpy())
|
|
else:
|
|
np.testing.assert_equal(np.float32(
|
|
W_q.q_scale()), np.float32(W_q_origin.q_scale()))
|
|
np.testing.assert_equal(
|
|
W_q.q_zero_point(), W_q_origin.q_zero_point())
|
|
|
|
class TestQuantizedConv(unittest.TestCase):
|
|
def _test_qconv_unpack_impl(
|
|
self, qconv_prepack_fn, qconv_unpack_fn, inputs, strides, pads,
|
|
channelwise
|
|
):
|
|
(X_data, W_data, bias_data, groups) = inputs
|
|
(X, (X_scale, X_zero_point, X_qtype)) = X_data
|
|
(W, (W_scale, W_zero_point, W_qtype)) = W_data
|
|
(bias, (bias_scale, bias_zero_point, bias_qtype)) = bias_data
|
|
if channelwise:
|
|
output_channels = W.shape[0]
|
|
W_scale = torch.tensor([W_scale] * output_channels)
|
|
W_zero_point = torch.tensor([W_zero_point] * output_channels)
|
|
|
|
W = torch.from_numpy(W).float()
|
|
bias = torch.from_numpy(bias).float()
|
|
if channelwise:
|
|
W_q = torch.quantize_per_channel(
|
|
W, scales=W_scale, zero_points=W_zero_point, axis=0,
|
|
dtype=W_qtype)
|
|
else:
|
|
W_q = torch.quantize_per_tensor(
|
|
W, scale=W_scale, zero_point=W_zero_point, dtype=W_qtype)
|
|
|
|
dilations = (1,) * len(strides)
|
|
W_packed = qconv_prepack_fn(W_q, bias, strides, pads, dilations, groups)
|
|
(W_unpacked, bias) = qconv_unpack_fn(W_packed)
|
|
|
|
# Assert equal
|
|
np.testing.assert_equal(W_q.int_repr().numpy(),
|
|
W_unpacked.int_repr().numpy())
|
|
if channelwise:
|
|
np.testing.assert_array_almost_equal(
|
|
np.float32(W_q.q_per_channel_scales().numpy()),
|
|
np.float32(W_unpacked.q_per_channel_scales().numpy()),
|
|
decimal=4)
|
|
np.testing.assert_equal(W_q.q_per_channel_zero_points(
|
|
).numpy(), W_unpacked.q_per_channel_zero_points().numpy())
|
|
else:
|
|
np.testing.assert_equal(np.float32(
|
|
W_q.q_scale()), np.float32(W_unpacked.q_scale()))
|
|
np.testing.assert_equal(
|
|
W_q.q_zero_point(), W_unpacked.q_zero_point())
|
|
|
|
def _make_qconv_tensors(
|
|
self, batch_size,
|
|
input_channels_per_group, input_feature_map_shape,
|
|
output_channels_per_group, groups, kernels, strides, pads, dilations,
|
|
X_scale, X_zero_point, W_scale, W_zero_point,
|
|
use_bias, use_channelwise
|
|
):
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
# Padded input size should be at least as big as dilated kernel
|
|
kernels = _single(kernels)
|
|
strides = _single(strides)
|
|
pads = _single(pads)
|
|
dilations = _single(dilations)
|
|
for i in range(len(kernels)):
|
|
assume(input_feature_map_shape[i] + 2 * pads[i]
|
|
>= dilations[i] * (kernels[i] - 1) + 1)
|
|
W_scale = W_scale * output_channels
|
|
W_zero_point = W_zero_point * output_channels
|
|
# Resize W_scale and W_zero_points arrays equal to output_channels
|
|
W_scale = W_scale[:output_channels]
|
|
W_zero_point = W_zero_point[:output_channels]
|
|
# For testing, we use small values for weights and for activations
|
|
# so that no overflow occurs in vpmaddubsw instruction. If the
|
|
# overflow occurs in qconv implementation and if there is no
|
|
# overflow
|
|
# In reference we can't exactly match the results with reference.
|
|
# Please see the comment in qconv implementation file
|
|
# aten/src/ATen/native/quantized/cpu/qconv.cpp for more details.
|
|
(W_value_min, W_value_max) = (-5, 5)
|
|
# the operator expects them in the format
|
|
# (output_channels, input_channels/groups,
|
|
# kernel_d, kernel_h, kernel_w)
|
|
W_init = torch.randint(
|
|
W_value_min,
|
|
W_value_max,
|
|
(output_channels, input_channels_per_group,) + kernels,
|
|
)
|
|
b_init = torch.randint(0, 10, (output_channels,))
|
|
|
|
(X_value_min, X_value_max) = (0, 4)
|
|
X_init = torch.randint(
|
|
X_value_min,
|
|
X_value_max,
|
|
(batch_size, input_channels,) + input_feature_map_shape,
|
|
)
|
|
X = X_scale * (X_init - X_zero_point).float()
|
|
|
|
if use_channelwise:
|
|
W_shape = (-1, 1) + (1,) * len(kernels)
|
|
W_scales_tensor = torch.tensor(W_scale, dtype=torch.float)
|
|
W_zero_points_tensor = torch.tensor(W_zero_point, dtype=torch.float)
|
|
W = W_scales_tensor.reshape(*W_shape) * (
|
|
W_init.float() - W_zero_points_tensor.reshape(*W_shape)).float()
|
|
b = X_scale * W_scales_tensor * b_init.float()
|
|
else:
|
|
W = W_scale[0] * (W_init - W_zero_point[0]).float()
|
|
b = X_scale * W_scale[0] * b_init.float()
|
|
|
|
X_q = torch.quantize_per_tensor(
|
|
X, scale=X_scale, zero_point=X_zero_point, dtype=torch.quint8)
|
|
if use_channelwise:
|
|
W_q = torch.quantize_per_channel(
|
|
W, W_scales_tensor, W_zero_points_tensor.long(), 0,
|
|
dtype=torch.qint8)
|
|
else:
|
|
W_q = torch.quantize_per_tensor(
|
|
W, scale=W_scale[0], zero_point=W_zero_point[0],
|
|
dtype=torch.qint8)
|
|
|
|
bias_float = b if use_bias else None
|
|
|
|
return (X, W), (X_q, W_q), bias_float
|
|
|
|
def _test_qconv_impl(
|
|
self, qconv_fn, qconv_prepack_fn, conv_op, batch_size,
|
|
input_channels_per_group, input_feature_map_shape,
|
|
output_channels_per_group, groups, kernels, strides, pads, dilations,
|
|
X_scale, X_zero_point, W_scale, W_zero_point, Y_scale, Y_zero_point,
|
|
use_bias, use_relu, use_channelwise
|
|
):
|
|
(X, W), (X_q, W_q), bias_float = self._make_qconv_tensors(
|
|
batch_size, input_channels_per_group, input_feature_map_shape,
|
|
output_channels_per_group, groups, kernels,
|
|
strides, pads, dilations, X_scale, X_zero_point, W_scale,
|
|
W_zero_point, use_bias, use_channelwise)
|
|
# Assign weights
|
|
conv_op.weight = torch.nn.Parameter(W, requires_grad=False)
|
|
conv_op.bias = torch.nn.Parameter(
|
|
bias_float, requires_grad=False) if use_bias else None
|
|
result_ref = conv_op(X)
|
|
if use_relu:
|
|
relu = torch.nn.ReLU()
|
|
result_ref = relu(result_ref)
|
|
|
|
# Quantize reference results for comparison
|
|
result_ref_q = torch.quantize_per_tensor(
|
|
result_ref, scale=Y_scale, zero_point=Y_zero_point,
|
|
dtype=torch.quint8)
|
|
|
|
W_prepack = qconv_prepack_fn(
|
|
W_q, bias_float, strides, pads, dilations, groups)
|
|
Y_q = qconv_fn(
|
|
X_q,
|
|
W_prepack,
|
|
strides,
|
|
pads,
|
|
dilations,
|
|
groups,
|
|
Y_scale,
|
|
Y_zero_point,
|
|
)
|
|
|
|
# Make sure the results match
|
|
# assert_array_almost_equal compares using the following formula:
|
|
# abs(desired-actual) < 1.5 * 10**(-decimal)
|
|
# (https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_almost_equal.html)
|
|
# We use decimal = 0 to ignore off-by-1 differences between
|
|
# reference and test. Off-by-1 differences arise due to the order of
|
|
# round and zero_point addition operation, i.e., if addition
|
|
# followed by round is used by reference and round followed by
|
|
# addition is used by test, the results may differ by 1.
|
|
# For example, the result of round(2.5) + 1 is 3 while
|
|
# round(2.5 + 1) is 4 assuming the rounding mode is
|
|
# round-to-nearest, ties-to-even.
|
|
np.testing.assert_array_almost_equal(
|
|
result_ref_q.int_repr().numpy(), Y_q.int_repr().numpy(), decimal=0)
|
|
|
|
"""Tests the correctness of quantized convolution op."""
|
|
@given(batch_size=st.integers(1, 3),
|
|
input_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
|
|
height=st.integers(10, 16),
|
|
width=st.integers(7, 14),
|
|
output_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
|
|
groups=st.integers(1, 3),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
X_scale=st.floats(1.2, 1.6),
|
|
X_zero_point=st.integers(0, 4),
|
|
W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
|
|
W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
|
|
Y_scale=st.floats(4.2, 5.6),
|
|
Y_zero_point=st.integers(0, 4),
|
|
use_bias=st.booleans(),
|
|
use_relu=st.booleans(),
|
|
use_channelwise=st.booleans(),
|
|
qengine=st.sampled_from(("qnnpack", "fbgemm")))
|
|
def test_qconv(
|
|
self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
X_scale,
|
|
X_zero_point,
|
|
W_scale,
|
|
W_zero_point,
|
|
Y_scale,
|
|
Y_zero_point,
|
|
use_bias,
|
|
use_relu,
|
|
use_channelwise,
|
|
qengine
|
|
):
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
return
|
|
if qengine == 'qnnpack':
|
|
# QNNPACK qconv is flaky on MACOS. Issue #27326
|
|
if IS_PPC or TEST_WITH_UBSAN or IS_MACOS:
|
|
return
|
|
use_channelwise = False
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
pads = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
|
|
with override_quantized_engine(qengine):
|
|
qconv = torch.ops.quantized.conv2d
|
|
if use_relu:
|
|
qconv = torch.ops.quantized.conv2d_relu
|
|
qconv_prepack = torch.ops.quantized.conv2d_prepack
|
|
conv_op = torch.nn.Conv2d(
|
|
input_channels,
|
|
output_channels,
|
|
kernels,
|
|
strides,
|
|
pads,
|
|
dilations,
|
|
groups,
|
|
)
|
|
self._test_qconv_impl(
|
|
qconv, qconv_prepack, conv_op, batch_size,
|
|
input_channels_per_group, (height, width),
|
|
output_channels_per_group, groups, kernels, strides, pads,
|
|
dilations, X_scale, X_zero_point, W_scale, W_zero_point,
|
|
Y_scale, Y_zero_point, use_bias, use_relu, use_channelwise)
|
|
|
|
"""Tests the correctness of the quantized::qconv_unpack op."""
|
|
@given(
|
|
inputs=hu.tensor_conv(
|
|
spatial_dim=2, batch_size_range=(1, 3),
|
|
input_channels_per_group_range=(1, 4),
|
|
output_channels_per_group_range=(1, 4), feature_map_range=(4, 8),
|
|
kernel_range=(1, 4), max_groups=4,
|
|
qparams=[hu.qparams(dtypes=torch.quint8,
|
|
zero_point_min=0,
|
|
zero_point_max=0),
|
|
hu.qparams(dtypes=torch.qint8,
|
|
zero_point_min=0,
|
|
zero_point_max=0),
|
|
hu.qparams(dtypes=torch.qint32,
|
|
zero_point_min=0,
|
|
zero_point_max=0)]),
|
|
stride_h=st.integers(1, 3), stride_w=st.integers(1, 3),
|
|
pad_h=st.integers(1, 2), pad_w=st.integers(1, 2),
|
|
channelwise=st.booleans(),
|
|
qengine=st.sampled_from(("qnnpack", "fbgemm")))
|
|
def test_qconv_unpack(
|
|
self, inputs, stride_h, stride_w, pad_h, pad_w, channelwise, qengine
|
|
):
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
return
|
|
if qengine == 'qnnpack':
|
|
if IS_PPC or TEST_WITH_UBSAN:
|
|
return
|
|
channelwise = False
|
|
|
|
with override_quantized_engine(qengine):
|
|
qconv_prepack = torch.ops.quantized.conv2d_prepack
|
|
qconv_unpack = torch.ops.quantized.conv2d_unpack
|
|
self._test_qconv_unpack_impl(
|
|
qconv_prepack, qconv_unpack, inputs, (stride_h, stride_w),
|
|
(pad_h, pad_w), channelwise)
|
|
|
|
"""Tests the correctness of quantized 1D convolution op."""
|
|
@given(batch_size=st.integers(1, 6),
|
|
input_channels_per_group=st.sampled_from((2, 4, 5, 8, 16, 32)),
|
|
output_channels_per_group=st.sampled_from((2, 4, 5, 8, 16, 32)),
|
|
groups=st.integers(1, 3),
|
|
length=st.integers(4, 16),
|
|
kernel=st.integers(1, 7),
|
|
stride=st.integers(1, 2),
|
|
pad=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
X_scale=st.floats(1.2, 1.6),
|
|
X_zero_point=st.integers(0, 4),
|
|
W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
|
|
W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
|
|
Y_scale=st.floats(4.2, 5.6),
|
|
Y_zero_point=st.integers(0, 4),
|
|
use_bias=st.booleans(),
|
|
qengine=st.sampled_from(("qnnpack", "fbgemm")))
|
|
def test_qconv1d(
|
|
self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
output_channels_per_group,
|
|
groups,
|
|
length,
|
|
kernel,
|
|
stride,
|
|
pad,
|
|
dilation,
|
|
X_scale,
|
|
X_zero_point,
|
|
W_scale,
|
|
W_zero_point,
|
|
Y_scale,
|
|
Y_zero_point,
|
|
use_bias,
|
|
qengine,
|
|
):
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
return
|
|
if qengine == 'qnnpack':
|
|
# QNNPACK qconv is flaky on MACOS. Issue #27326
|
|
if IS_PPC or TEST_WITH_UBSAN or IS_MACOS:
|
|
return
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
|
|
(X, W), (X_q, W_q), bias_float = self._make_qconv_tensors(
|
|
batch_size, input_channels_per_group, (length,),
|
|
output_channels_per_group, groups, kernel, stride, pad,
|
|
dilation, X_scale, X_zero_point, W_scale, W_zero_point,
|
|
use_bias, False)
|
|
|
|
true_conv1d = torch.nn.Conv1d(
|
|
input_channels,
|
|
output_channels,
|
|
kernel,
|
|
stride,
|
|
pad,
|
|
dilation,
|
|
groups,
|
|
)
|
|
true_conv1d.weight = torch.nn.Parameter(W)
|
|
true_conv1d.bias = torch.nn.Parameter(bias_float) if use_bias else None
|
|
true_outp = true_conv1d(X)
|
|
q_result_ref = torch.quantize_per_tensor(
|
|
true_outp, scale=Y_scale, zero_point=Y_zero_point,
|
|
dtype=torch.quint8)
|
|
|
|
with override_quantized_engine(qengine):
|
|
conv_op = torch.nn.quantized.Conv1d(
|
|
input_channels,
|
|
output_channels,
|
|
kernel,
|
|
stride,
|
|
pad,
|
|
dilation,
|
|
groups,
|
|
)
|
|
# Get the quantized weights and the output quantization params.
|
|
conv_op.set_weight_bias(W_q, bias_float)
|
|
conv_op.scale = float(Y_scale)
|
|
conv_op.zero_point = int(Y_zero_point)
|
|
|
|
q_outp = conv_op(X_q)
|
|
|
|
np.testing.assert_array_almost_equal(
|
|
q_result_ref.int_repr().numpy(),
|
|
q_outp.int_repr().numpy(),
|
|
decimal=0)
|
|
|
|
@given(batch_size=st.integers(1, 4),
|
|
input_channels_per_group=st.sampled_from([2, 4, 5, 8, 16]),
|
|
D=st.integers(4, 8),
|
|
H=st.integers(4, 8),
|
|
W=st.integers(4, 8),
|
|
output_channels_per_group=st.sampled_from([2, 4, 5, 8, 16]),
|
|
groups=st.integers(1, 3),
|
|
kernel_d=st.integers(1, 4),
|
|
kernel_h=st.integers(1, 4),
|
|
kernel_w=st.integers(1, 4),
|
|
stride_d=st.integers(1, 2),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_d=st.integers(0, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
X_scale=st.floats(1.2, 1.6),
|
|
X_zero_point=st.integers(0, 4),
|
|
W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
|
|
W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
|
|
Y_scale=st.floats(4.2, 5.6),
|
|
Y_zero_point=st.integers(0, 4),
|
|
use_bias=st.booleans(),
|
|
use_relu=st.booleans(),
|
|
use_channelwise=st.booleans(),
|
|
qengine=st.sampled_from(("fbgemm",)))
|
|
def test_qconv3d(
|
|
self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
D,
|
|
H,
|
|
W,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_d,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_d,
|
|
stride_h,
|
|
stride_w,
|
|
pad_d,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
X_scale,
|
|
X_zero_point,
|
|
W_scale,
|
|
W_zero_point,
|
|
Y_scale,
|
|
Y_zero_point,
|
|
use_bias,
|
|
use_relu,
|
|
use_channelwise,
|
|
qengine
|
|
):
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
return
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_d, kernel_h, kernel_w)
|
|
strides = (stride_d, stride_h, stride_w)
|
|
pads = (pad_d, pad_h, pad_w)
|
|
dilations = (dilation, dilation, dilation)
|
|
|
|
with override_quantized_engine(qengine):
|
|
qconv = torch.ops.quantized.conv3d
|
|
if use_relu:
|
|
qconv = torch.ops.quantized.conv3d_relu
|
|
qconv_prepack = torch.ops.quantized.conv3d_prepack
|
|
conv_op = torch.nn.Conv3d(
|
|
input_channels,
|
|
output_channels,
|
|
kernels,
|
|
strides,
|
|
pads,
|
|
dilations,
|
|
groups,
|
|
)
|
|
self._test_qconv_impl(
|
|
qconv, qconv_prepack, conv_op, batch_size,
|
|
input_channels_per_group, (D, H, W), output_channels_per_group,
|
|
groups, kernels, strides, pads, dilations, X_scale,
|
|
X_zero_point, W_scale, W_zero_point, Y_scale, Y_zero_point,
|
|
use_bias, use_relu, use_channelwise)
|
|
|
|
"""Tests the correctness of the quantized::qconv3d_unpack op."""
|
|
@given(
|
|
inputs=hu.tensor_conv(
|
|
spatial_dim=3, batch_size_range=(1, 3),
|
|
input_channels_per_group_range=(1, 3),
|
|
output_channels_per_group_range=(1, 3), feature_map_range=(3, 6),
|
|
kernel_range=(1, 3), max_groups=3,
|
|
qparams=[hu.qparams(dtypes=torch.quint8,
|
|
zero_point_min=0,
|
|
zero_point_max=0),
|
|
hu.qparams(dtypes=torch.qint8,
|
|
zero_point_min=0,
|
|
zero_point_max=0),
|
|
hu.qparams(dtypes=torch.qint32,
|
|
zero_point_min=0,
|
|
zero_point_max=0)]),
|
|
stride_d=st.integers(1, 2), stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_d=st.integers(1, 2), pad_h=st.integers(1, 2),
|
|
pad_w=st.integers(1, 2),
|
|
channelwise=st.booleans(),
|
|
qengine=st.sampled_from(("fbgemm",)))
|
|
def test_qconv3d_unpack(
|
|
self, inputs, stride_d, stride_h, stride_w, pad_d, pad_h, pad_w,
|
|
channelwise, qengine
|
|
):
|
|
if qengine not in torch.backends.quantized.supported_engines:
|
|
return
|
|
|
|
with override_quantized_engine(qengine):
|
|
qconv3d_prepack = torch.ops.quantized.conv3d_prepack
|
|
qconv3d_unpack = torch.ops.quantized.conv3d_unpack
|
|
self._test_qconv_unpack_impl(
|
|
qconv3d_prepack, qconv3d_unpack, inputs,
|
|
(stride_d, stride_h, stride_w), (pad_d, pad_h, pad_w),
|
|
channelwise)
|
|
|
|
@unittest.skipUnless('qnnpack' in torch.backends.quantized.supported_engines,
|
|
"This Pytorch Build has not been built with QNNPACK")
|
|
@unittest.skipIf(IS_PPC, "QNNPACK is not currently supported on ppc64le")
|
|
@unittest.skipIf(TEST_WITH_UBSAN,
|
|
"QNNPACK does not play well with UBSAN at the moment,"
|
|
" so we skip the test if we are in a UBSAN environment.")
|
|
@unittest.skipIf(IS_MACOS, "QNNPACK tests are flaky on MacOS currently - Issue #29326")
|
|
class TestQNNPackOps(TestCase):
|
|
"""Tests the correctness of the quantized::qnnpack_relu op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams(dtypes=torch.quint8,
|
|
zero_point_min=0,
|
|
zero_point_max=0)))
|
|
def test_qnnpack_relu(self, X):
|
|
with override_quantized_engine('qnnpack'):
|
|
X, (scale, zero_point, torch_type) = X
|
|
relu = torch.nn.functional.relu
|
|
X = torch.from_numpy(X)
|
|
Y = X.clone()
|
|
|
|
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, dtype=torch_type)
|
|
qY_hat = relu(qX)
|
|
|
|
Y[Y < 0] = 0
|
|
qY = torch.quantize_per_tensor(Y, scale=scale, zero_point=zero_point, dtype=torch_type)
|
|
self.assertEqual(qY, qY_hat)
|
|
|
|
"""Tests the correctness of the quantized::qnnpack_tanh op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams(dtypes=torch.quint8)))
|
|
def test_qnnpack_tanh(self, X):
|
|
# Note: In QNNPACK the output scale and zero_point can only be
|
|
# 2.0/256, 128 respectively, as it uses a LUT with 256 bins.
|
|
X, (scale, zero_point, torch_type) = X
|
|
X = torch.from_numpy(X)
|
|
qX = torch.quantize_per_tensor(X, scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
# Floating point reference
|
|
Y = torch.tanh(X)
|
|
qY = torch.quantize_per_tensor(Y, scale=1.0 / 128, zero_point=128,
|
|
dtype=torch.quint8)
|
|
with override_quantized_engine('fbgemm'):
|
|
qYserver = torch.tanh(qX)
|
|
with override_quantized_engine('qnnpack'):
|
|
qY_hat = torch.tanh(qX)
|
|
self.assertEqual(qY, qY_hat,
|
|
message="QNNPACK TanH failed (FP ref)!")
|
|
self.assertEqual(qYserver, qY_hat,
|
|
message="QNNPACK TanH failed (FBGEMM ref)!")
|
|
|
|
"""Tests the correctness of the quantized::qnnpack_sigmoid op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams(dtypes=torch.quint8)))
|
|
def test_qnnpack_sigmoid(self, X):
|
|
# Note: In QNNPACK the output scale and zero_point can only be
|
|
# 1.0/256, 0 respectively, as it uses a LUT with 256 bins.
|
|
X, (scale, zero_point, torch_type) = X
|
|
X = torch.from_numpy(X).to(torch.float32)
|
|
qX = torch.quantize_per_tensor(X, scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
# Floating point reference
|
|
Y = torch.sigmoid(X)
|
|
qY = torch.quantize_per_tensor(Y, scale=1.0 / 256, zero_point=0,
|
|
dtype=torch.quint8)
|
|
with override_quantized_engine('fbgemm'):
|
|
qYserver = torch.sigmoid(qX)
|
|
with override_quantized_engine('qnnpack'):
|
|
qY_hat = torch.sigmoid(qX)
|
|
self.assertEqual(qY, qY_hat,
|
|
message="QNNPACK Sigmoid failed (FP ref)!")
|
|
self.assertEqual(qYserver, qY_hat,
|
|
message="QNNPACK Sigmoid failed (FBGEMM ref)!")
|
|
|
|
def test_qnnpack_sigmoid_sweep(self):
|
|
# Input parameters
|
|
f_min = -4.0
|
|
f_max = 4.0
|
|
scale = (f_max - f_min) / 256.0
|
|
zero_point = 128
|
|
dtype = torch.quint8
|
|
|
|
step = scale / 2.0
|
|
x = np.arange(f_min, f_max + step, step)
|
|
X = torch.from_numpy(x).to(torch.float32)
|
|
qX = torch.quantize_per_tensor(X, scale=scale,
|
|
zero_point=zero_point,
|
|
dtype=dtype)
|
|
|
|
dqX = qX.dequantize()
|
|
# Floating point reference
|
|
Y = torch.sigmoid(dqX)
|
|
qY = torch.quantize_per_tensor(Y, scale=1.0 / 256, zero_point=0,
|
|
dtype=torch.quint8)
|
|
with override_quantized_engine('fbgemm'):
|
|
qYserver = torch.sigmoid(qX)
|
|
with override_quantized_engine('qnnpack'):
|
|
qY_hat = torch.sigmoid(qX)
|
|
self.assertEqual(qY, qY_hat,
|
|
message="QNNPACK Sigmoid failed (FP ref)!")
|
|
self.assertEqual(qYserver, qY_hat,
|
|
message="QNNPACK Sigmoid failed (FBGEMM ref)!")
|
|
|
|
"""Tests the correctness of the quantized::add (qnnpack) op."""
|
|
@settings(suppress_health_check=(HealthCheck.filter_too_much,))
|
|
@given(A=hu.tensor(shapes=hu.array_shapes(1, 5, 1, 5),
|
|
qparams=hu.qparams(dtypes=torch.quint8)),
|
|
zero_point=st.sampled_from([0, 2, 5, 15, 127]),
|
|
scale_A=st.sampled_from([0.001, 0.057, 0.889, 12.3]),
|
|
scale_B=st.sampled_from([0.008, 0.0821, 0.67, 7]),
|
|
scale_C=st.sampled_from([0.003, 0.07821, 0.457, 7.34]),)
|
|
def test_qnnpack_add(self, A, zero_point, scale_A, scale_B, scale_C):
|
|
with override_quantized_engine('qnnpack'):
|
|
A_temp = A
|
|
A, (scale_a, zero_point_A, torch_type) = A_temp
|
|
B, (scale_b, zero_point_B, torch_type) = A_temp
|
|
A = torch.from_numpy(A)
|
|
B = torch.from_numpy(B)
|
|
|
|
assume(scale_A // scale_C >= 2**-14)
|
|
assume(scale_A // scale_C < 2**8)
|
|
assume(scale_B // scale_C >= 2**-14)
|
|
assume(scale_B // scale_C < 2**8)
|
|
|
|
zero_point_C = 127
|
|
qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point,
|
|
dtype=torch.quint8)
|
|
qB = torch.quantize_per_tensor(B, scale=scale_B, zero_point=zero_point,
|
|
dtype=torch.quint8)
|
|
|
|
# Add ground truth
|
|
C = (qA.dequantize() + qB.dequantize()).numpy()
|
|
|
|
qC = _quantize(C, scale_C, zero_point_C)
|
|
|
|
qC_qnnp = torch.ops.quantized.add(qA, qB, scale_C, zero_point_C)
|
|
|
|
np.testing.assert_equal(qC, qC_qnnp.int_repr(),
|
|
"Quantized addition failed.")
|
|
|
|
Crelu = C.copy()
|
|
Crelu[C < 0] = 0
|
|
qCrelu = torch.quantize_per_tensor(torch.from_numpy(Crelu), scale_C,
|
|
zero_point_C, dtype=torch.quint8)
|
|
qCrelu_hat = torch.ops.quantized.add_relu(qA, qB, scale=scale_C, zero_point=zero_point_C)
|
|
np.testing.assert_equal(qCrelu.int_repr().numpy(), qCrelu_hat.int_repr(),
|
|
"Quantized addition with ReLU failed.")
|
|
|
|
A = torch.ones((0, 2), dtype=torch.float32)
|
|
qA = torch.quantize_per_tensor(A, scale=scale_A, zero_point=zero_point_A,
|
|
dtype=torch.quint8)
|
|
qC = torch.ops.quantized.add(qA, qA, scale_C, zero_point_C)
|
|
np.testing.assert_equal(qC.size(), qA.size(),
|
|
"Quantized addition with batch size 0 failed.")
|
|
|
|
"""Tests the correctness of quantized::qnnpack_maxpool2d op."""
|
|
@given(A=hu.tensor(shapes=hu.array_shapes(4, 4, 3, 5),
|
|
qparams=hu.qparams(dtypes=torch.quint8)),
|
|
kernel=st.sampled_from([2, 4]),
|
|
stride=st.sampled_from([1, 2]),
|
|
padding=st.sampled_from([1, 2]))
|
|
def test_qnnpack_maxpool2d(self, A, kernel, stride, padding):
|
|
import torch.nn.functional as F
|
|
|
|
with override_quantized_engine('qnnpack'):
|
|
A, (scale, zero_point, torch_type) = A
|
|
X = torch.from_numpy(A)
|
|
np_type = np.uint8
|
|
dilation = 1
|
|
|
|
# Check constraints
|
|
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
|
|
|
|
iH, iW = X.shape[-2:]
|
|
|
|
oH = pool_output_shape(iH, kernel, padding, stride, dilation)
|
|
assume(oH > 0)
|
|
oW = pool_output_shape(iW, kernel, padding, stride, dilation)
|
|
assume(oW > 0)
|
|
|
|
k = (kernel, kernel)
|
|
s = (stride, stride)
|
|
d = (dilation, dilation)
|
|
p = (padding, padding)
|
|
|
|
q_max_pool = torch.ops.quantized.max_pool2d
|
|
|
|
a = scale * (X - zero_point).to(dtype=torch.float)
|
|
qa = torch.quantize_per_tensor(a, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
|
|
a_ref = qa.dequantize()
|
|
|
|
a_pool = F.max_pool2d(a_ref, kernel_size=k, stride=s, padding=p,
|
|
dilation=d)
|
|
|
|
a_pool_nhwc = a_pool.permute([0, 2, 3, 1])
|
|
|
|
qa_pool = q_max_pool(qa, k, s, p, d, ceil_mode=False)
|
|
|
|
qa_pool_int = qa_pool.dequantize()
|
|
np.testing.assert_equal(a_pool.numpy(), qa_pool_int.numpy())
|
|
|
|
A = torch.ones((0, 2, 4, 4), dtype=torch.float32)
|
|
qa = torch.quantize_per_tensor(A, scale=scale, zero_point=zero_point,
|
|
dtype=torch_type)
|
|
qc = q_max_pool(qa, k, s, p, d, ceil_mode=False)
|
|
oH = pool_output_shape(4, kernel, padding, stride, dilation)
|
|
oW = pool_output_shape(4, kernel, padding, stride, dilation)
|
|
np.testing.assert_equal(qc.size(), (0, 2, oH, oW),
|
|
"Quantized maxpool2d with batch size 0 failed.")
|
|
|
|
@given(batch_size=st.integers(1, 5),
|
|
channels=st.sampled_from([2, 4, 5, 8, 16, 32]),
|
|
height=st.integers(4, 10),
|
|
width=st.integers(4, 10),
|
|
kernel=st.integers(2, 5),
|
|
stride=st.integers(1, 2),
|
|
padding=st.integers(1, 2),
|
|
scale=st.floats(0.2, 1.6),
|
|
zero_point=st.integers(0, 25)
|
|
)
|
|
def test_avg_pool2d(
|
|
self,
|
|
batch_size,
|
|
channels,
|
|
height,
|
|
width,
|
|
kernel,
|
|
stride,
|
|
padding,
|
|
scale,
|
|
zero_point
|
|
|
|
):
|
|
with override_quantized_engine('qnnpack'):
|
|
import torch.nn.functional as F
|
|
X_init = torch.from_numpy(np.random.randint(
|
|
0, 50, (batch_size, channels, height, width)))
|
|
|
|
X = scale * (X_init - zero_point).to(dtype=torch.float)
|
|
|
|
# Check constraints
|
|
assume(kernel // 2 >= padding) # Kernel cannot be overhanging!
|
|
|
|
iH, iW = X.shape[-2:]
|
|
|
|
oH = pool_output_shape(iH, kernel, padding, stride, 1)
|
|
assume(oH > 0)
|
|
oW = pool_output_shape(iW, kernel, padding, stride, 1)
|
|
assume(oW > 0)
|
|
k = (kernel, kernel)
|
|
s = (stride, stride)
|
|
p = (padding, padding)
|
|
|
|
q_avg_pool = torch.nn.quantized.functional.avg_pool2d
|
|
|
|
x_q = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point,
|
|
dtype=torch.quint8)
|
|
|
|
a_pool = F.avg_pool2d(x_q.dequantize().to(torch.float), kernel_size=k, stride=s, padding=p)
|
|
qa_pool = q_avg_pool(x_q, k, s, p)
|
|
# Quantize Ref Output
|
|
a_pool_q = torch.quantize_per_tensor(a_pool, scale=scale, zero_point=zero_point,
|
|
dtype=torch.quint8)
|
|
np.testing.assert_array_almost_equal(a_pool_q.int_repr().numpy(),
|
|
qa_pool.int_repr().numpy(), decimal=0)
|
|
|
|
|
|
@given(batch_size=st.integers(1, 5),
|
|
channels=st.sampled_from([2, 4, 5, 8, 16, 32]),
|
|
height=st.integers(4, 10),
|
|
width=st.integers(4, 10),
|
|
scale=st.floats(0.02, 2.6),
|
|
zero_point=st.integers(0, 25))
|
|
def test_mean(self, batch_size, channels, height, width, scale, zero_point):
|
|
with override_quantized_engine('qnnpack'):
|
|
dim = (2, 3)
|
|
X_init = torch.from_numpy(np.random.randint(
|
|
0, 50, (batch_size, channels, height, width)))
|
|
X = scale * (X_init - zero_point).to(dtype=torch.float)
|
|
|
|
qX = torch.quantize_per_tensor(X, scale, zero_point, torch.quint8)
|
|
Y = torch.mean(qX.dequantize(), dim)
|
|
Y = torch.quantize_per_tensor(Y, scale, zero_point, torch.quint8)
|
|
qY = torch.mean(qX, dim)
|
|
np.testing.assert_array_almost_equal(Y.int_repr().numpy(), qY.int_repr().numpy(), decimal=0)
|
|
|
|
"""Tests the correctness of the quantized::hardswish op."""
|
|
@given(X=hu.tensor(shapes=hu.array_shapes(1, 8, 1, 8),
|
|
elements=hu.floats(-1e6, 1e6, allow_nan=False, allow_infinity=False),
|
|
qparams=hu.qparams(dtypes=(torch.quint8))),
|
|
Y_scale=st.floats(1e-6, 1e6),
|
|
Y_zero_point=st.integers(0, 10))
|
|
def test_hardswish(self, X, Y_scale, Y_zero_point):
|
|
_test_hardswish(self, X, Y_scale, Y_zero_point, 'qnnpack')
|
|
|
|
"""Tests the correctness of the tensor comparators."""
|
|
class TestComparatorOps(TestCase):
|
|
"""Tests the element-wise equality ops."""
|
|
@given(A=hu.tensor(shapes=((3, 4, 5),),
|
|
qparams=hu.qparams()),
|
|
B=hu.tensor(shapes=((5,), (1, 5), (1, 1, 5), (4, 5), (3, 4, 5)),
|
|
qparams=hu.qparams()))
|
|
def test_compare_tensor_tensor(self, A, B):
|
|
A, (scale_a, zero_point_a, dtype_a) = A
|
|
B, (scale_b, zero_point_b, dtype_b) = B
|
|
tA = torch.from_numpy(A)
|
|
tB = torch.from_numpy(B)
|
|
|
|
qA = torch.quantize_per_tensor(tA, scale=scale_a, zero_point=zero_point_a,
|
|
dtype=dtype_a)
|
|
qB = torch.quantize_per_tensor(tB, scale=scale_b, zero_point=zero_point_b,
|
|
dtype=dtype_b)
|
|
dqA = qA.dequantize()
|
|
dqB = qB.dequantize()
|
|
|
|
ops_under_test = ('__eq__', '__ne__', '__ge__', '__le__', '__gt__',
|
|
'__lt__', 'eq', 'ne', 'ge', 'le', 'gt', 'lt')
|
|
|
|
for op in ops_under_test:
|
|
result_ref = getattr(dqA, op)(dqB)
|
|
result = getattr(qA, op)(qB)
|
|
self.assertEqual(result_ref, result,
|
|
"'tensor.{}(tensor)'' failed".format(op))
|
|
# Reversed broadcasting.
|
|
result_ref = getattr(dqB, op)(dqA)
|
|
result = getattr(qB, op)(qA)
|
|
self.assertEqual(result_ref, result,
|
|
"'tensor.{}(tensor)'' failed".format(op))
|
|
|
|
@unittest.skip("FIXME: Failing due to overflow error without width option")
|
|
@given(A=hu.tensor(shapes=((3, 4, 5),),
|
|
qparams=hu.qparams()),
|
|
b=hu.floats(allow_infinity=False, allow_nan=False))
|
|
def test_compare_tensor_scalar(self, A, b):
|
|
A, (scale_a, zero_point_a, dtype_a) = A
|
|
tA = torch.from_numpy(A)
|
|
|
|
qA = torch.quantize_per_tensor(tA, scale=scale_a, zero_point=zero_point_a,
|
|
dtype=dtype_a)
|
|
dqA = qA.dequantize()
|
|
|
|
ops_under_test_reversible = ('__eq__', '__ne__', '__ge__', '__le__',
|
|
'__gt__', '__lt__')
|
|
ops_under_test_nonreversible = ('eq', 'ne', 'ge', 'le', 'gt', 'lt')
|
|
|
|
for op in ops_under_test_reversible:
|
|
result_ref = getattr(dqA, op)(b)
|
|
result = getattr(qA, op)(b)
|
|
self.assertEqual(result_ref, result,
|
|
"'tensor.{}(scalar)'' failed".format(op))
|
|
# Reversed broadcasting.
|
|
result_ref = getattr(b, op)(dqA)
|
|
result = getattr(b, op)(qA)
|
|
self.assertEqual(result_ref, result,
|
|
"'scalar.{}(tensor)'' failed".format(op))
|
|
|
|
for op in ops_under_test_nonreversible:
|
|
result_ref = getattr(dqA, op)(b)
|
|
result = getattr(qA, op)(b)
|
|
self.assertEqual(result_ref, result,
|
|
"'tensor.{}(scalar)'' failed".format(op))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|