pytorch/caffe2/python/operator_test/conv_test.py
Jongsoo Park 54e8623d26 3D Conv in NHWC layout (#12733)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12733

Conv in NHWC layout only works for 2D images. This has been a pain point when implementing quantized 3D convolution because we need NHWC layout for best performance (note that NHWC layout in general gives better performance in CPU not just for quantized operators). For example, our quantized ops have a functionality to measure quantized error operator by operator but this needs running a shadow fp32 operator, but this is not easy when there's no 3D conv in NHWC layout is available (currently we're doing layout conversion on the fly for the shadow fp32 operator which is error prone). Some of Caffe2 frameworks like brew generates error when we try to create a 3D conv op in NHWC layout. This was also a blocker for using aibench because aibench is using brew.

i-am-not-moving-c2-to-c10

Reviewed By: houseroad

Differential Revision: D10333829

fbshipit-source-id: 2d203ee1db833cd3f9d39353219e3894b46c4389
2018-11-04 21:50:09 -08:00

775 lines
30 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import functools
import numpy as np
from hypothesis import assume, given
import hypothesis.strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import brew, core, workspace
import caffe2.python.hip_test_util as hiputl
import caffe2.python.hypothesis_test_util as hu
from caffe2.python.model_helper import ModelHelper
import caffe2.python.serialized_test.serialized_test_util as serial
import caffe2.python._import_c_extension as C
import unittest
import os
def _cudnn_supports(
dilation=False,
nhwc=False,
backward=False,
):
"""Return True if cuDNN supports this configuration."""
v = workspace.GetCuDNNVersion()
if backward:
if nhwc:
# nhwc isn't supported in backward ops.
return False
else:
# Forward mode.
if dilation and v < 6000:
# Dilation not supported until v6
return False
if dilation and nhwc:
# Dilation and NHWC not supported together
return False
return True
def _cudnn_convolution_algo_count(direction):
try:
if direction == "fwd":
return st.integers(0, C.cudnn_convolution_fwd_algo_count - 1)
elif direction == "dgrad":
return st.integers(0, C.cudnn_convolution_bwd_data_algo_count - 1)
elif direction == "wgrad":
return st.integers(0, C.cudnn_convolution_bwd_filter_algo_count - 1)
else:
assert False
except Exception:
return st.sampled_from([-1])
def nhwc2nchw(tensor):
return tensor.transpose((0, tensor.ndim - 1) + tuple(range(1, tensor.ndim - 1)))
def nchw2nhwc(tensor):
return tensor.transpose((0,) + tuple(range(2, tensor.ndim)) + (1,))
class TestConvolution(serial.SerializedTestCase):
# CUDNN does NOT support different padding values and we skip it
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
stride_h=st.integers(1, 3),
stride_w=st.integers(1, 3),
pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(1, 8),
input_channels=st.integers(1, 3),
output_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
group=st.integers(1, 2),
order=st.sampled_from(["NCHW", "NHWC"]),
engine=st.sampled_from(["", "EIGEN"]),
shared_buffer=st.booleans(),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_separate_stride_pad_gradients(
self, op_type, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r,
kernel, size, input_channels, output_channels, batch_size, group,
order, engine, shared_buffer, use_bias, gc, dc):
# TODO: Group conv in NHWC not implemented for GPU yet.
assume(group == 1 or order == "NCHW" or gc.device_type == caffe2_pb2.CPU)
if group != 1 and order == "NHWC":
dc = [d for d in dc if d.device_type == caffe2_pb2.CPU]
input_channels *= group
output_channels *= group
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride_h=stride_h,
stride_w=stride_w,
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
kernel=kernel,
group=group,
order=order,
engine=engine,
shared_buffer=int(shared_buffer),
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, kernel, kernel, int(input_channels / group)
).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
w = w.transpose((0, 3, 1, 2))
inputs = [X, w, b] if use_bias else [X, w]
# Error handling path.
if size + pad_r + pad_l < kernel or size + pad_t + pad_b < kernel:
with self.assertRaises(RuntimeError):
self.assertDeviceChecks(dc, op, inputs, [0])
return
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
# CUDNN does NOT support different padding values and we skip it
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
stride_h=st.integers(1, 3),
stride_w=st.integers(1, 3),
pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
engine=st.sampled_from(["", "EIGEN"]),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_separate_stride_pad_layout(
self, op_type, stride_h, stride_w, pad_t, pad_l, pad_b, pad_r,
kernel, size, input_channels, output_channels, batch_size, engine,
use_bias, gc, dc):
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, kernel, kernel, input_channels
).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
outputs = {}
for order in ["NCHW", "NHWC"]:
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride_h=stride_h,
stride_w=stride_w,
kernel=kernel,
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
order=order,
engine=engine,
device_option=gc,
)
if order == "NCHW":
X_f = X.transpose((0, 3, 1, 2))
w_f = w.transpose((0, 3, 1, 2))
else:
X_f = X
w_f = w
self.ws.create_blob("X").feed(X_f, device_option=gc)
self.ws.create_blob("w").feed(w_f, device_option=gc)
self.ws.create_blob("b").feed(b, device_option=gc)
self.ws.run(op)
outputs[order] = self.ws.blobs["Y"].fetch()
np.testing.assert_allclose(
outputs["NCHW"],
outputs["NHWC"].transpose((0, 3, 1, 2)),
atol=1e-4,
rtol=1e-4)
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
dilation=st.integers(1, 3),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
group=st.integers(1, 2),
order=st.sampled_from(["NCHW", "NHWC"]),
engine=st.sampled_from(["", "CUDNN", "MKLDNN"]),
use_bias=st.booleans(),
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
def test_convolution_gradients(
self, op_type, stride, pad, kernel, dilation, size, input_channels,
output_channels, batch_size, group, order, engine, use_bias,
force_algo_fwd, force_algo_dgrad, force_algo_wgrad, gc, dc):
# TODO: Group conv in NHWC not implemented for GPU yet.
assume(
group == 1
or (order == "NCHW" or gc.device_type == caffe2_pb2.CPU)
and engine != "MKLDNN"
)
if group != 1 and order == "NHWC":
dc = [d for d in dc if d.device_type == caffe2_pb2.CPU]
input_channels *= group
output_channels *= group
dkernel = dilation * (kernel - 1) + 1
if engine == 'CUDNN':
if hiputl.run_in_hip(gc, dc):
assume((order == "NCHW") and not (dilation > 1 and group > 1))
else:
assume(_cudnn_supports(dilation=(dilation > 1),
nhwc=(order == 'NHWC'),
backward=True))
assume(engine != "MKLDNN" or use_bias is True)
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
kernel=kernel,
dilation=dilation,
pad=pad,
group=group,
order=order,
engine=engine,
force_algo_fwd=force_algo_fwd,
force_algo_dgrad=force_algo_dgrad,
force_algo_wgrad=force_algo_wgrad,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, kernel, kernel, int(input_channels / group)
).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
w = w.transpose((0, 3, 1, 2))
inputs = [X, w, b] if use_bias else [X, w]
# Error handling path.
if size + pad + pad < dkernel or size + pad + pad < dkernel:
with self.assertRaises(RuntimeError):
self.assertDeviceChecks(dc, op, inputs, [0])
return
try:
self.assertDeviceChecks(dc, op, inputs, [0])
except RuntimeError as e:
es = str(e)
# CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM should always have
# implementation
if "status == CUDNN_STATUS_SUCCESS" not in es \
or "CUDNN_STATUS_NOT_SUPPORTED" not in es \
or force_algo_fwd == 0:
raise e
for i in range(len(inputs)):
try:
self.assertGradientChecks(gc, op, inputs, i, [0])
except RuntimeError as e:
es = str(e)
if "status == CUDNN_STATUS_SUCCESS" not in es \
or "CUDNN_STATUS_NOT_SUPPORTED" not in es:
raise e
def _nd_convolution(self, n, input_channels, output_channels,
batch_size, stride, size, kernel, dilation, pad,
order, use_bias, engine, force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc):
dkernel = dilation * (kernel - 1) + 1
for op_type in ["Conv", "Conv" + str(n) + "D"]:
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
strides=[stride] * n,
kernels=[kernel] * n,
dilations=[dilation] * n,
pads=[pad] * n * 2,
order=order,
engine=engine,
force_algo_fwd=force_algo_fwd,
force_algo_dgrad=force_algo_dgrad,
force_algo_wgrad=force_algo_wgrad,
)
input_dims = [batch_size, input_channels]
input_dims.extend([size] * n)
filter_dims = [output_channels, input_channels]
filter_dims.extend([kernel] * n)
X = np.random.rand(*input_dims).astype(np.float32) - 0.5
w = np.random.rand(*filter_dims).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
if order == "NHWC":
X = nchw2nhwc(X)
w = nchw2nhwc(w)
inputs = [X, w, b] if use_bias else [X, w]
if size + pad + pad < dkernel or size + pad + pad < dkernel:
with self.assertRaises(RuntimeError):
self.assertDeviceChecks(dc, op, inputs, [0])
return
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
@given(input_channels=st.integers(1, 3),
output_channels=st.integers(1, 2),
batch_size=st.integers(1, 3),
stride=st.integers(1, 3),
size=st.integers(7, 10),
kernel=st.integers(1, 2),
dilation=st.integers(1, 3),
pad=st.integers(0, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
use_bias=st.booleans(),
engine=st.sampled_from(["", "CUDNN"]),
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
def test_1d_convolution(self, input_channels, output_channels,
batch_size, stride, size, kernel, dilation,
pad, order, use_bias, engine,
force_algo_fwd, force_algo_dgrad,
force_algo_wgrad,
gc, dc):
if hiputl.run_in_hip(gc, dc):
# currently miopen only supports 2d conv
assume(engine != 'CUDNN') # CUDNN is aliased to MIOPEN for HIP
# TODO: 1D conv in NHWC not implemented for GPU yet.
assume(order == "NCHW" or gc.device_type == caffe2_pb2.CPU)
if order == "NHWC":
dc = [d for d in dc if d.device_type == caffe2_pb2.CPU]
self._nd_convolution(
1, input_channels, output_channels, batch_size, stride, size,
kernel, dilation, pad, order, use_bias,
engine, force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc
)
@given(input_channels=st.integers(1, 2),
output_channels=st.integers(1, 2),
batch_size=st.integers(1, 2),
stride=st.integers(1, 2),
size=st.integers(4, 5),
kernel=st.integers(1, 2),
dilation=st.integers(1, 2),
pad=st.integers(0, 2),
order=st.sampled_from(["NCHW", "NHWC"]),
use_bias=st.booleans(),
engine=st.sampled_from([""]), # TODO: add "CUDNN"
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
def test_3d_convolution(self, input_channels, output_channels,
batch_size, stride, size, kernel, dilation,
pad, order, use_bias, engine,
force_algo_fwd, force_algo_dgrad,
force_algo_wgrad,
gc, dc):
# TODO: 3D conv in NHWC not implemented for GPU yet.
assume(order == "NCHW" or gc.device_type == caffe2_pb2.CPU)
if order == "NHWC":
dc = [d for d in dc if d.device_type == caffe2_pb2.CPU]
self._nd_convolution(
3, input_channels, output_channels, batch_size, stride, size,
kernel, dilation, pad, order, use_bias,
engine, force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc
)
@given(op_type=st.sampled_from(["Conv", "Conv3D"]),
batch_size=st.integers(1, 2),
stride=st.integers(1, 2),
size=st.integers(3, 5),
kernel=st.integers(1, 2),
dilation=st.integers(1, 2),
pad=st.integers(0, 2),
use_bias=st.booleans(),
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs_no_hip) # MIOPEN doesn't support 3D conv yet
def test_3d_convolution_cudnn_nchw(self, op_type, batch_size, stride, size,
kernel, dilation, pad, use_bias,
force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc):
input_channels = 1
output_channels = 1
n = 3
dkernel = dilation * (kernel - 1) + 1
order = "NCHW"
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
strides=[stride] * n,
kernels=[kernel] * n,
dilations=[dilation] * n,
pads=[pad] * n * 2,
order=order,
engine="CUDNN",
force_algo_fwd=force_algo_fwd,
force_algo_dgrad=force_algo_dgrad,
force_algo_wgrad=force_algo_wgrad,
)
input_dims = [batch_size, input_channels]
input_dims.extend([size] * n)
filter_dims = [output_channels, input_channels]
filter_dims.extend([kernel] * n)
X = np.random.rand(*input_dims).astype(np.float32) - 0.5
w = np.random.rand(*filter_dims).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
inputs = [X, w, b] if use_bias else [X, w]
if size + pad + pad < dkernel or size + pad + pad < dkernel:
with self.assertRaises(RuntimeError):
self.assertDeviceChecks(dc, op, inputs, [0])
return
try:
self.assertDeviceChecks(dc, op, inputs, [0])
except RuntimeError as e:
es = str(e)
# CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM should always have
# implementation
if "status == CUDNN_STATUS_SUCCESS" not in es \
or "CUDNN_STATUS_NOT_SUPPORTED" not in es \
or force_algo_fwd == 0:
raise e
for i in range(len(inputs)):
try:
self.assertGradientChecks(gc, op, inputs, i, [0])
except RuntimeError as e:
es = str(e)
if "status == CUDNN_STATUS_SUCCESS" not in es \
or "CUDNN_STATUS_NOT_SUPPORTED" not in es:
raise e
@given(op_type=st.sampled_from(["Conv", "Conv2D"]),
stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
dilation=st.integers(1, 3),
size=st.integers(7, 10),
input_channels=st.integers(1, 8),
output_channels=st.integers(1, 8),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
**hu.gcs)
def test_convolution_layout(self, op_type, stride, pad, kernel, dilation,
size, input_channels, output_channels,
batch_size, use_bias, gc, dc):
assume(size >= dilation * (kernel - 1) + 1)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, kernel, kernel, input_channels
).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
Output = collections.namedtuple("Output", ["Y", "engine", "order"])
outputs = []
for order in ["NCHW", "NHWC"]:
engine_list = ['']
if hiputl.run_in_hip(gc, dc):
if order == 'NCHW':
engine_list.append('MIOPEN')
else:
if _cudnn_supports(dilation=(dilation > 1), nhwc=(order == 'NHWC')):
engine_list.append('CUDNN')
for engine in engine_list:
op = core.CreateOperator(
op_type,
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
kernel=kernel,
dilation=dilation,
pad=pad,
order=order,
engine=engine,
device_option=gc,
exhaustive_search=True,
)
if order == "NCHW":
X_f = X.transpose((0, 3, 1, 2))
w_f = w.transpose((0, 3, 1, 2))
else:
X_f = X
w_f = w
self.assertDeviceChecks(
dc,
op,
[X_f, w_f, b] if use_bias else [X_f, w_f],
[0])
self.ws.create_blob("X").feed(X_f, device_option=gc)
self.ws.create_blob("w").feed(w_f, device_option=gc)
self.ws.create_blob("b").feed(b, device_option=gc)
self.ws.run(op)
outputs.append(Output(
Y=self.ws.blobs["Y"].fetch(), engine=engine, order=order))
def canonical(o):
if o.order == "NHWC":
return o.Y.transpose((0, 3, 1, 2))
else:
return o.Y
for o in outputs:
np.testing.assert_allclose(
canonical(outputs[0]),
canonical(o),
atol=1e-4,
rtol=1e-4)
@given(num_workers=st.integers(1, 4),
net_type=st.sampled_from(
["simple", "dag"] +
(["async_dag"] if workspace.has_gpu_support or
workspace.has_hip_support else [])),
engine=st.sampled_from(["CUDNN", ""]),
**hu.gcs_no_hip)
def test_convolution_sync(self, net_type, num_workers, engine, gc, dc):
m = ModelHelper(name="test_model")
n = 1
d = 2
depth = 3
iters = 5
h = 5
w = 5
workspace.ResetWorkspace()
use_cudnn = (engine == 'CUDNN')
np.random.seed(1701)
# Build a binary tree of conv layers, summing at each node.
for i in reversed(range(depth)):
for j in range(2 ** i):
bottom_1 = "{}_{}".format(i + 1, 2 * j)
bottom_2 = "{}_{}".format(i + 1, 2 * j + 1)
mid_1 = "{}_{}_m".format(i + 1, 2 * j)
mid_2 = "{}_{}_m".format(i + 1, 2 * j + 1)
top = "{}_{}".format(i, j)
w1, b1, w2, b2 = np.random.randn(4).tolist()
brew.conv(
m, bottom_1, mid_1,
dim_in=d, dim_out=d,
kernel=3,
weight_init=('ConstantFill', dict(value=w1)),
bias_init=('ConstantFill', dict(value=b1)),
cudnn_state=np.random.randint(0, 3),
stride=1,
pad=1,
deterministic=1,
use_cudnn=use_cudnn,
engine=engine)
brew.conv(
m, bottom_2, mid_2,
dim_in=d, dim_out=d,
kernel=3,
stride=1,
pad=1,
weight_init=('ConstantFill', dict(value=w2)),
bias_init=('ConstantFill', dict(value=b2)),
deterministic=1,
cudnn_state=np.random.randint(0, 3),
use_cudnn=use_cudnn,
engine=engine)
m.net.Sum([mid_1, mid_2], top)
m.net.Flatten(["0_0"], ["0_0_flat"])
m.net.SquaredL2Distance(["0_0_flat", "label"], "xent")
m.net.AveragedLoss("xent", "loss")
input_to_grad = m.AddGradientOperators(["loss"])
m.Proto().device_option.CopyFrom(gc)
m.param_init_net.Proto().device_option.CopyFrom(gc)
m.Proto().type = net_type
m.Proto().num_workers = num_workers
self.ws.run(m.param_init_net)
def run():
import numpy as np
np.random.seed(1701)
input_blobs = ["{}_{}".format(depth, j) for j in range(2 ** depth)]
for input_blob in input_blobs:
self.ws.create_blob(input_blob).feed(
np.random.randn(n, d, h, w).astype(np.float32),
device_option=gc)
self.ws.create_blob("label").feed(
np.random.randn(n, d * h * w).astype(np.float32),
device_option=gc)
self.ws.run(m.net)
gradients = [
self.ws.blobs[str(input_to_grad[input_blob])].fetch()
for input_blob in input_blobs]
return gradients
outputs = [run() for _ in range(iters)]
for output in outputs[1:]:
np.testing.assert_array_equal(outputs[0], output)
np.testing.assert_allclose(
np.sum(np.square(output)),
1763719461732352.0,
rtol=1e-5)
def test_use_cudnn_engine_interactions(self):
"""Make sure the use_cudnn and engine kwargs work as expected."""
for model_default in [None, True, False]:
arg_scope = {}
if model_default is not None:
arg_scope['use_cudnn'] = model_default
else:
model_default = True # the default
model = ModelHelper(arg_scope=arg_scope)
self.assertEqual(model.arg_scope['use_cudnn'], model_default)
f = functools.partial(brew.conv, model,
'conv_in', 'conv_out', 10, 10, 5)
for op_cudnn in [None, True, False]:
for op_engine in [None, '', 'CUDNN']:
kwargs = {}
if op_cudnn is not None:
kwargs['use_cudnn'] = op_cudnn
else:
op_cudnn = False # the default
if op_engine is not None:
kwargs['engine'] = op_engine
calculated_cudnn = kwargs.get('use_cudnn', model_default)
expected_engine = kwargs.get(
'engine',
'CUDNN' if calculated_cudnn else '')
if ((calculated_cudnn is False and op_engine == 'CUDNN') or
(calculated_cudnn is True and op_engine == '')):
with self.assertRaises(ValueError):
f(**kwargs)
else:
f(**kwargs)
self.assertEqual(model.Proto().op[-1].engine,
expected_engine)
@serial.given(
op_type=st.sampled_from(["Conv", "Conv2D"]), N=st.integers(1, 4),
G=st.integers(1, 4), DX=st.integers(1, 4), DY=st.integers(1, 4),
H=st.integers(1, 4), W=st.integers(1, 4), use_bias=st.booleans(),
order=st.sampled_from(["NCHW", "NHWC"]),
force_algo_fwd=_cudnn_convolution_algo_count("fwd"),
force_algo_dgrad=_cudnn_convolution_algo_count("dgrad"),
force_algo_wgrad=_cudnn_convolution_algo_count("wgrad"),
**hu.gcs)
def test_1x1_conv(self, op_type, N, G, DX, DY, H, W, use_bias, order,
force_algo_fwd, force_algo_dgrad,
force_algo_wgrad, gc, dc):
if hiputl.run_in_hip(gc, dc):
assume(order == "NCHW")
if order == "NHWC":
G = 1
C = G * DX
M = G * DY
op = core.CreateOperator(
op_type,
["X", "filter", "bias"] if use_bias else ["X", "filter"],
["Y"],
stride_h=1,
stride_w=1,
pad_t=0,
pad_l=0,
pad_b=0,
pad_r=0,
kernel=1,
order=order,
group=G,
force_algo_fwd=force_algo_fwd,
force_algo_dgrad=force_algo_dgrad,
force_algo_wgrad=force_algo_wgrad,
)
if order == "NCHW":
X = np.random.randn(N, C, H, W).astype(np.float32)
filter = np.random.randn(M, DX, 1, 1).astype(np.float32)
else:
X = np.random.randn(N, H, W, C).astype(np.float32)
filter = np.random.randn(M, 1, 1, DX).astype(np.float32)
bias = np.random.randn(M).astype(np.float32)
inputs = [X, filter, bias] if use_bias else [X, filter]
def conv_1x1_nchw_ref(X, filter, bias=None):
X = X.reshape(N, G, DX, -1)
filter = filter.reshape(G, DY, DX)
Y = np.zeros(shape=(N, G, DY, H * W), dtype=np.float32)
for i in range(N):
for j in range(G):
Y[i, j, :, :] = np.dot(filter[j, :, :], X[i, j, :, :])
Y = Y.reshape(N, M, H, W)
if bias is not None:
bias = bias.reshape(1, M, 1, 1)
Y = np.add(Y, bias)
return [Y]
def conv_1x1_nhwc_ref(X, filter, bias=None):
X = X.reshape(N, -1, G, DX)
filter = filter.reshape(G, DY, DX)
Y = np.zeros(shape=(N, H * W, G, DY), dtype=np.float32)
for i in range(N):
for j in range(G):
Y[i, :, j, :] = np.dot(
X[i, :, j, :], filter[j, :, :].transpose())
Y = Y.reshape(N, H, W, M)
if bias is not None:
bias = bias.reshape(1, 1, 1, M)
Y = np.add(Y, bias)
return [Y]
if order == "NCHW":
conv_1x1_ref = conv_1x1_nchw_ref
else:
conv_1x1_ref = conv_1x1_nhwc_ref
self.assertReferenceChecks(
device_option=gc,
op=op,
inputs=inputs,
reference=conv_1x1_ref,
)
self.assertDeviceChecks(dc, op, inputs, [0])
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0])
if __name__ == "__main__":
unittest.main()