pytorch/torch/csrc/jit/ir.cpp
Edward Yang 54d9823d00 Make caffe2::Tensor::dims() return an IntList instead of a const vector& (#12180)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12180

I had to fix a lot of call sites, because a lot of places assume that
you can actually get a const vector&, and if the internal representation
of sizes in a tensor is NOT a vector, it's not possible to fulfill
this API contract.

Framework changes:
- I deleted TensorImpl::dims(); caffe2::Tensor::dims() just forwards to
  sizes() now.
- De-templatized SetDims; now it is an explicit list of ArrayRef and
  variadic overloads.  This makes implicit conversions work again,
  so I don't need to explicitly list the std::vector cases too.
  - As a knock-on effect, this causes Reset() to accept at::IntList as well as
    const std::vector<int64_t>&
- Edited variadic overloads of SetDims to all forward to the underlying
  arbitrary-dim implementation, reducing code duplication. (It's probably
  marginally less efficient in the new world.)
- Replace Tensor constructor accepting const std::vector<int64_t>& with at::IntList
- Make MKLTensor accept ArrayRef along with vector in constructor and
  Reset (unfortunately, no implicit conversions here, since it's templated on
  index type.)
- There are a few other places, like cudnn, where I changed functions
  that previously took const std::vector<int64_t>& to take at::IntList
  instead.

Classification of call site changes:
- 'const std::vector<int64_t>& x_dims = x.dims()' ==>
  'at::IntList x_dims = x.dims()'
- 'std::vector<int64_t> x_dims = x.dims()' ==>
  'std::vector<int64_t> x_dims = x.dims().vec()' (we need a copy!)
  Usually this is because we're about to mutably modify the vector
  to compute some new dimension.  However, it also very commonly occurs in the
  form: 'x_dims_ = x.dims()' because we frequently cache sizes in operators.
- Instead of constructing std::vector<int64_t>{blah, blah}, construct an
  at::IntList directly

ArrayRef changes:
- cbegin()/cend() iterators, they operate the same aas begin()/end() because
  everything on ArrayRef is const.
- Moved operator<< into ArrayRef.h, so that it's always available when
  working with ArrayRef.  I also templated it, so it now works on an
  ArrayRef of any type.
- Add operator== overload for ArrayRef, and also add variants to permit
  comparison of ArrayRef with std::vector, a very common operation.
  (The non-templated version of operator== can get these automatically
  via implicit conversion, but with templates C++ refuses to do
  any explicit conversions.)

I'm planning to audit all dims() call sites to make sure they don't
expect 'auto x = t.dims()' to give you an x whose lifetime can validly
outlive the tensor.

I opted not to do a dims() to sizes() rename, because dims() also matches
the protobufs accessor.  Bad news!

Reviewed By: jerryzh168

Differential Revision: D10111759

fbshipit-source-id: a2a81dc4b92c22ad4b3b8ef4077a7e97b6479452
2018-10-05 15:57:41 -07:00

621 lines
19 KiB
C++

#include "ir.h"
#include "torch/csrc/jit/operator.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/jit/constants.h"
#include "torch/csrc/jit/assertions.h"
#include "torch/csrc/jit/script/compiler.h"
#include "torch/csrc/jit/passes/pretty_print.h"
#include <iostream>
#include <unordered_map>
#include <unordered_set>
#include <set>
#include <stack>
#include <sstream>
#include <algorithm>
#include <string>
namespace torch { namespace jit {
// Sigh, see https://stackoverflow.com/questions/8016780/undefined-reference-to-static-constexpr-char
constexpr Symbol PythonOp::Kind;
void printValueRef(std::ostream & out, const Value * n) {
out << "%" << n->uniqueName();
}
// NB: This overload will become ambiguous with the one Caffe2 provides in its
// logging, if they ever intersect.
template <typename T>
std::ostream& operator<<(std::ostream & out, const std::vector<T> & nodes) {
out << at::ArrayRef<T>{nodes};
return out;
}
template <typename T>
std::ostream& printValueRefs(std::ostream & out, const at::ArrayRef<T> & nodes) {
size_t i = 0;
for(auto n : nodes) {
if(i++ > 0)
out << ", ";
printValueRef(out, n);
}
return out;
}
// Can't make these two overloads directly a template, it'll be ambiguous with
// the global printer for operator<<.
std::ostream& operator<<(std::ostream & out, const at::ArrayRef<const Value*> & nodes) {
return printValueRefs(out, nodes);
}
std::ostream& operator<<(std::ostream & out, const at::ArrayRef<Value*> & nodes) {
return printValueRefs(out, nodes);
}
struct const_value_list_with_types {
const ArrayRef<const Value*> values;
bool use_newlines;
const_value_list_with_types(ArrayRef<const Value*> values, bool use_newlines = false)
: values(values), use_newlines(use_newlines) {}
};
std::ostream& operator<<(std::ostream & out, const_value_list_with_types l) {
size_t i = 0;
for(auto n : l.values) {
if(i++ > 0) {
if (l.use_newlines) {
// TODO: Indent here is hard-coded for "graph(": un-hard-code it
out << "\n ";
} else {
out << ", ";
}
}
printValueRef(out, n);
out << " : ";
out << *n->type();
}
return out;
}
void printAttributes(std::ostream & out, const Node * n, bool ignore_subgraph=false) {
out << "[";
auto names = n->attributeNames();
int i = 0;
for(auto name : names) {
if (ignore_subgraph && name == attr::Subgraph)
continue;
if(i++ > 0)
out << ", ";
// TODO: debugging mode to see the qualifier. We definitely
// don't want to print the qualifier since it should always
// be attribute, but you might be able to track down a weird
// bug by printing it out.
out << name.toUnqualString() << "=";
n->printValue(out, name);
}
out << "]";
}
static std::ostream & indent(std::ostream & out, size_t level) {
for(size_t i = 0; i < level; ++i)
out << " ";
return out;
}
std::ostream& printNode(std::ostream & out, size_t level, const Node * n, std::vector<const Node*> * groups) {
auto outputs = n->outputs();
indent(out, level) << const_value_list_with_types(outputs);
out << " = ";
IR_IFM_CONST(n,PythonOp)
out << "^" << value->name();
value->writeScalars(out);
IR_ELSE()
if(n->hasAttribute(attr::Subgraph) && groups) {
out << n->kind().toQualString() << "_" << groups->size();
if (n->numAttributes() > 1 && n->kind() != prim::DifferentiableGraph) {
printAttributes(out, n, /*ignore_subgraph=*/true);
}
groups->push_back(n);
} else {
out << n->kind().toQualString();
if(n->hasAttributes()) {
printAttributes(out,n);
}
}
IR_END()
out << "(" << n->inputs() << ")";
std::string scopeName = n->scopeName();
if (scopeName.empty()) {
out << "\n";
}
else {
out << ", ";
out << "scope: " << scopeName << "\n";
}
for(size_t i = 0; i < n->blocks().size(); ++i) {
auto b = n->blocks()[i];
indent(out, level + 1) << "block" << i << "(" << const_value_list_with_types(b->inputs(), false) << ") {\n";
for(auto n : b->nodes()) {
printNode(out, level + 2, n, groups);
}
indent(out, level + 2) << "-> (" << b->outputs() << ")\n";
indent(out, level + 1) << "}\n";
}
return out;
}
std::ostream& operator<<(std::ostream & out, const Node & n) {
return printNode(out, 0, &n, nullptr);
}
std::ostream& operator<<(std::ostream & out, const Graph & g) {
out << "graph(" << const_value_list_with_types(g.inputs(), true) << ") {\n";
std::vector<const Node*> groups;
for(auto n : g.nodes()) {
printNode(out, 1, n, &groups);
}
out << " return (" << g.outputs() << ");\n}\n";
size_t i = 0;
for(auto fg : groups) {
out << "with " << fg->kind().toQualString() << "_" <<i++ << " = " << *fg->g(attr::Subgraph);
}
/*
// Uncomment this to debug all_nodes issues
{
out << "\n";
out << "all_nodes:\n";
for (auto& n : g.all_nodes) {
printNode(out, const_cast<Node*>(n), nullptr);
}
}
*/
return out;
}
std::ostream& Graph::prettyPrint(std::ostream & out) {
PrettyPrint(out, *this);
return out;
}
void Graph::dumpPretty() {
PrettyPrint(std::cout, *this);
}
static void checkSameDevice(const Node* node) {
bool has_device = false;
int device;
auto checkValue = [&](const Value* v) {
if(CompleteTensorTypePtr type = v->type()->cast<CompleteTensorType>()) {
if(!has_device) {
has_device = true;
device = type->device();
} else {
JIT_ASSERT(device == type->device());
}
}
};
for(auto input : node->inputs()) {
checkValue(input);
}
for(auto output : node->outputs()) {
checkValue(output);
}
}
using node_set = std::set<const Node*>;
#define ALL_OF(container) container.begin(), container.end()
// These functions purposely operate on the internal members directly, to force
// you to think about how the invariants change if you change the data
// representation (even if the external API does not change.)
// NB: This assert is written to assume you don't have any unattached
// nodes. Unattached nodes can occur while manipulations to the
// graph are occurring.
void Node::lint() const {
// Node invariants
// - if node should live in list, nodes_iter is consistent
// - Inputs are all marked as a use by the nodes they refer to
// - Owning graph is non-null and consistent
// - The "Select" invariant, when the node is MultiReturn
//
// The handle invariant:
// If a node takes a handle as an input, it is always the
// LAST input of the node. There is at most one handle input.
{
size_t i = 0;
for (auto input : inputs_) {
// WARNING: O(n^2)
JIT_ASSERT(std::find(ALL_OF(input->uses_), Use(const_cast<Node*>(this), i)) != input->uses_.end());
JIT_ASSERT(graph_->all_nodes.count(this) == 1);
i++;
}
}
for(auto o : outputs()) {
size_t i = 0;
for (auto use : o->uses()) {
// Use invariants
// - Use is consistent with inputs
// - Every user node is live (checked in Graph)
JIT_ASSERT(use.user->inputs_[use.offset] == o);
i++;
}
}
// Node subclass invariants
IR_IF(this,Constant)
JIT_ASSERT(inputs_.size() == 0);
IR_ELSEIF(LoadWorld)
JIT_ASSERT(inputs_.size() == 0);
JIT_ASSERT(outputs_.size() == 1);
IR_ELSEIF(StoreWorld)
JIT_ASSERT(inputs_.size() == 1);
JIT_ASSERT(outputs_.size() == 0);
IR_ELSEIF(Return)
// Return uses is zero
JIT_ASSERT(outputs().size() == 0);
IR_ELSEIF(Param)
// Param inputs is zero
JIT_ASSERT(inputs_.size() == 0);
IR_ELSEIFM_CONST(PythonOp)
// Python operator cconv is correct
size_t n_scalars = 0, n_tensors = 0;
for (auto c : value->cconv) {
if (c == 'c') {
n_scalars++;
} else if (c == 'd') {
n_tensors++;
} else {
JIT_ASSERT(0);
}
JIT_ASSERT(static_cast<bool>(value->pyobj));
}
JIT_ASSERT(n_scalars == value->scalar_args.size());
JIT_ASSERT(n_tensors == inputs_.size());
IR_ELSEIF(Eval)
// TODO: add invariants
// TODO: It's not good for these ops to be top-level, it makes cases longer.
IR_ELSEIF(FusionGroup)
checkSameDevice(value);
// TODO: Typecheck the parameters
value->g(attr::Subgraph)->lint();
IR_END()
}
// TODO: When lint fails, give better indication about which
// instruction triggered the failure.
void Graph::lint() const {
// Graph invariants
// Uncomment the following to see the graph
// std::cout << *const_cast<Graph*>(this);
// nodes
// - nodes_ is a valid topological ordering for inputs
// - No repeated nodes
// - Params and return do NOT occur in nodes
// - next_unique_ is greater than all uniques in graph
// - uniques in all_nodes are unique
// - every use will occur later in the topsort
struct LintScope {
LintScope() = default;
LintScope(std::unique_ptr<LintScope> parent)
: parent(std::move(parent)) {}
bool contains(const Value * v) {
return values.count(v) > 0 || (parent && parent->contains(v));
}
bool contains(const Node * n) {
return nodes.count(n) > 0 || (parent && parent->contains(n));
}
void insert(const Value * v) {
JIT_ASSERT(!contains(v));
values.insert(v);
}
void insert(const Node * n) {
JIT_ASSERT(!contains(n));
nodes.insert(n);
}
std::unique_ptr<LintScope> parent;
private:
std::unordered_set<const Value*> values;
std::unordered_set<const Node*> nodes;
};
// Struct enables mutual recursion in linting methods.
// Putting it inside Graph::lint enables access to private Graph members
struct LintImpl {
LintImpl(const Graph & g)
: g(g)
, scope(new LintScope())
, all_nodes_set(ALL_OF(g.all_nodes)) {} // NB: all_nodes is *unordered*
const Graph & g;
std::unique_ptr<LintScope> scope;
std::unordered_set<size_t> seen_uniques;
std::unordered_map<const Node*, int64_t> anticipated_uses;
node_set all_nodes_set;
node_set sum_set;
void check_value(const Value* v) {
scope->insert(v);
auto b2 = seen_uniques.insert(v->unique());
JIT_ASSERT(b2.second); // insertion took place
JIT_ASSERT(v->unique() < g.next_unique_);
for (auto use : v->uses()) {
JIT_ASSERT(!scope->contains(use.user));
JIT_ASSERT(g.all_nodes.count(use.user) == 1);
anticipated_uses[use.user]++; // int default constructs to 0
}
}
void check_node(const Node* n) {
for (auto input : n->inputs_) {
if (!scope->contains(input)) {
JIT_ASSERTM(0, input->unique(), " not in scope");
}
}
JIT_ASSERT(anticipated_uses[n] == static_cast<int64_t>(n->inputs_.size()));
anticipated_uses[n] = -1; // we saw the anticipated user!
scope->insert(n);
for(auto block : n->blocks()) {
std::unique_ptr<LintScope> new_scope(new LintScope(std::move(scope)));
scope = std::move(new_scope);
check_block(block);
scope = std::move(scope->parent);
}
size_t i = 0;
for(auto o : n->outputs()) {
JIT_ASSERT(o->node() == n);
JIT_ASSERT(i++ == o->offset_);
check_value(o);
}
n->lint();
}
void check_block(const Block *b) {
for (auto input : b->inputs()) {
check_value(input);
JIT_ASSERT(input->node()->kind_ == prim::Param);
}
for (auto n : b->nodes()) {
JIT_ASSERT(n->kind_ != prim::Param);
JIT_ASSERT(n->kind_ != prim::Return);
JIT_ASSERT(n->kind_ != prim::DummyWorld);
check_node(n);
}
JIT_ASSERT(b->output_->kind() == prim::Return);
check_node(b->output_);
// all_nodes
// - inputs_, output_ and nodes_ are all included in all_nodes
// - all_nodes does not contain dead nodes??? (likely to be temporarily
// suspended). Weaker: all_nodes contains all inputs and returns
// - only one return node???
node_set nodes_set(ALL_OF(b->nodes()));
node_set inputs_set {b->input_};
node_set output_set {b->output_};
// TODO: Make a more type safe std::includes wrapper which disallows use on
// non-ordered containers
JIT_ASSERT(std::includes(ALL_OF(all_nodes_set), ALL_OF(nodes_set)));
JIT_ASSERT(std::includes(ALL_OF(all_nodes_set), ALL_OF(inputs_set)));
JIT_ASSERT(std::includes(ALL_OF(all_nodes_set), ALL_OF(output_set)));
sum_set.insert(ALL_OF(nodes_set));
sum_set.insert(ALL_OF(inputs_set));
sum_set.insert(ALL_OF(output_set));
}
void check_graph() {
node_set all_nodes_set(ALL_OF(g.all_nodes)); // NB: all_nodes is *unordered*
check_block(g.block_);
for (auto kv : anticipated_uses) {
JIT_ASSERT(kv.second == -1);
}
JIT_ASSERT(std::includes(ALL_OF(sum_set), ALL_OF(all_nodes_set)));
}
};
LintImpl(*this).check_graph();
}
void Graph::dump() const {
std::cout << *this << "\n";
}
void LintGraph(std::shared_ptr<Graph>& graph) {
graph->lint();
}
void Block::cloneFrom(Block * src, std::function<Value*(Value*)> value_map) {
std::unordered_map<Value*, Value*> local_map;
auto env = [&](Value * v) {
auto it = local_map.find(v);
if(it != local_map.end())
return it->second;
return value_map(v);
};
auto graph = owningGraph();
for(auto input : src->inputs()) {
local_map[input] = this->addInput()->copyMetadata(input);
}
for(auto node : src->nodes()) {
auto new_node = this->appendNode(graph->createClone(node, env));
for(size_t i = 0; i < node->outputs().size(); ++i) {
auto oo = node->outputs()[i];
auto no = new_node->outputs()[i];
local_map[oo] = no;
no->copyMetadata(oo);
}
}
for(auto output : src->outputs()) {
this->registerOutput(env(output));
}
}
std::shared_ptr<Graph> Graph::copy() {
auto new_g = std::make_shared<Graph>();
auto env = [](Value* v) -> Value* {
AT_ERROR(
"Graph::copy() encountered a use of a value not in scope. Run lint!");
};
new_g->block()->cloneFrom(this->block(), env);
return new_g;
}
Value* Value::setUniqueName(const std::string & name) {
if (name.size() > 0 && name.find_first_not_of("0123456789") == std::string::npos) {
throw std::runtime_error("names may not be integers: " + name);
}
auto & names = node()->owningGraph()->unique_names_;
// clear any old name from the map
if(hasUniqueName()) {
names.erase(unique_name_);
unique_name_ = "";
}
// allow "" to clear the uniquename
if(name == "")
return this;
// if someone else has this name, then rename the other value
auto old_owner_of_name = names.find(name);
if(old_owner_of_name != names.end()) {
size_t suffix = 1;
std::string name_base = name;
auto last_dot_pos = name.find_last_of('.');
if (last_dot_pos != std::string::npos && last_dot_pos + 1 != name.size()) {
if (name.find_first_not_of("0123456789", last_dot_pos + 1) == std::string::npos) {
suffix = std::stoll(name.substr(last_dot_pos + 1));
name_base = name.substr(0, last_dot_pos);
}
}
std::string replacement_name;
do {
std::stringstream ss;
ss << name_base << "." << suffix++;
replacement_name = ss.str();
} while(names.count(replacement_name) > 0);
old_owner_of_name->second->setUniqueName(replacement_name);
}
names[name] = this;
unique_name_ = name;
return this;
}
size_t findArgument(const FunctionSchema& the_schema, Symbol name) {
auto name_str = name.toUnqualString();
for (size_t i = 0; i < the_schema.arguments.size(); ++i) {
const Argument* arg = &the_schema.arguments[i];
if (arg->name == name_str) {
return i;
}
}
throw std::runtime_error(std::string("Couldn't find an argument called ") + name.toQualString());
}
at::optional<IValue> Node::get(Symbol name) const {
return toIValue(namedInput(name));
}
Value* Node::namedInput(Symbol name) const {
return input(findArgument(schema(), name));
}
bool Node::matches(const char *signature_literal, at::ArrayRef<Symbol> const_inputs) const {
if (!sig(signature_literal).matches(this)) return false;
for (Symbol s : const_inputs) {
if (!is_constant(s)) return false;
}
return true;
}
void Node::dump() const {
std::cout << *this << "\n";
}
void Node::findSchema() const {
schema_ = &getOperatorFor(this).schema();
}
namespace {
const OperatorSet& nondeterminstic_aten_ops() {
static OperatorSet nondeterministic_ops = {
"aten::dropout(Tensor input, float p, bool train) -> Tensor",
"aten::_fused_dropout(Tensor self, float p, Generator generator) -> (Tensor, Tensor)",
"aten::_standard_gamma(Tensor self, Generator generator) -> Tensor",
"aten::bernoulli(Tensor self, *, Generator generator) -> Tensor",
"aten::bernoulli(Tensor self, float p, *, Generator generator) -> Tensor",
"aten::multinomial(Tensor self, int num_samples, bool replacement, *, Generator generator) -> Tensor",
"aten::normal(Tensor mean, Tensor std, *, Generator generator) -> Tensor",
"aten::normal(float mean, Tensor std, *, Generator generator) -> Tensor",
"aten::normal(Tensor mean, float std, *, Generator generator) -> Tensor",
"aten::poisson(Tensor self, Generator generator) -> Tensor",
"aten::rrelu(Tensor self, Scalar lower, Scalar upper, bool training, Generator generator) -> Tensor",
"aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, Generator generator) -> Tensor",
"aten::rand(int[] size, *, int dtype, int layout, int[] device) -> Tensor",
"aten::rand_like(Tensor self) -> Tensor",
"aten::rand_like(Tensor self, *, int dtype, int layout, int[] device) -> Tensor",
"aten::randint(int high, int[] size, *, int dtype, int layout, int[] device) -> Tensor",
"aten::randint(int low, int high, int[] size, *, int dtype, int layout, int[] device) -> Tensor",
"aten::randint_like(Tensor self, int high) -> Tensor",
"aten::randint_like(Tensor self, int low, int high) -> Tensor",
"aten::randint_like(Tensor self, int high, *, int dtype, int layout, int[] device) -> Tensor",
"aten::randint_like(Tensor self, int low, int high, *, int dtype, int layout, int[] device) -> Tensor",
"aten::randn(int[] size, *, int dtype, int layout, int[] device) -> Tensor",
"aten::randn_like(Tensor self) -> Tensor",
"aten::randn_like(Tensor self, *, int dtype, int layout, int[] device) -> Tensor",
"aten::randperm(int n, *, int dtype, int layout, int[] device) -> Tensor"
};
return nondeterministic_ops;
}
} // namespace
bool Node::isNondeterministic() const {
if (nondeterminstic_aten_ops().find(this) == nullptr) {
return false;
}
// Dropout with train = False is deterministic
if (matches("aten::dropout(Tensor input, float p, bool train) -> Tensor") && is_constant(attr::train) && !get<bool>(attr::train).value()) {
return false;
}
return true;
}
inline const SourceRange& fakeRange() {
static SourceRange range(std::make_shared<std::string>("<internally-created-node>"), 0, 1);
return range;
}
Value* Graph::insert(Symbol opname, at::ArrayRef<NamedValue> args, at::ArrayRef<NamedValue> kwargs) {
return script::emitBuiltinCall(fakeRange(), *this, opname, args, kwargs, /*required=*/true);
}
PythonOp* defaultAllocPythonOp(Graph*g) {
throw std::runtime_error("Trying to allocate a Python object without python bindings loaded");
}
std::atomic<decltype(&defaultAllocPythonOp)> alloc_python_op;
// patched in when python bindings are loaded
PythonOp* allocPythonOp(Graph* g) {
return alloc_python_op.load()(g);
}
void setAllocPythonOp(PythonOp* (*v)(Graph* g)) {
alloc_python_op.store(v);
}
}} // namespace torch::jit