mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary:
The caching allocator can be configured to round memory allocations in order to reduce fragmentation. Sometimes however, the overhead from rounding can be higher than the fragmentation it helps reduce.
We have added a new stat to CUDA caching allocator stats to help track if rounding is adding too much overhead and help tune the roundup_power2_divisions flag:
- "requested_bytes.{current,peak,allocated,freed}": memory requested by client code, compare this with allocated_bytes to check if allocation rounding adds too much overhead
Test Plan: Added test case in caffe2/test/test_cuda.py
Differential Revision: D40810674
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88575
Approved by: https://github.com/zdevito
1333 lines
43 KiB
C++
1333 lines
43 KiB
C++
#include <ATen/ATen.h>
|
|
#include <ATen/cuda/CUDAConfig.h>
|
|
#if AT_CUDNN_ENABLED()
|
|
|
|
#include <ATen/native/cudnn/Macros.h>
|
|
|
|
#endif
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <ATen/cuda/CUDAGeneratorImpl.h>
|
|
#include <ATen/cuda/CachingHostAllocator.h>
|
|
#include <ATen/cuda/Sleep.h>
|
|
#include <ATen/cuda/detail/CUDAHooks.h>
|
|
#include <ATen/cuda/jiterator.h>
|
|
#include <c10/cuda/CUDACachingAllocator.h>
|
|
#include <c10/cuda/CUDAFunctions.h>
|
|
#include <ATen/cuda/CUDAGraphsUtils.cuh>
|
|
#ifdef USE_NCCL
|
|
#include <torch/csrc/cuda/python_nccl.h>
|
|
#endif
|
|
#include <c10/util/CallOnce.h>
|
|
#include <c10/util/irange.h>
|
|
|
|
#include <torch/csrc/CudaIPCTypes.h>
|
|
#include <torch/csrc/Generator.h>
|
|
#include <torch/csrc/cuda/CUDAPluggableAllocator.h>
|
|
#include <torch/csrc/cuda/THCP.h>
|
|
#include <torch/csrc/cuda/python_comm.h>
|
|
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/cuda_lazy_init.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/pycfunction_helpers.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
|
|
#include <array>
|
|
#include <chrono>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
|
|
#ifndef WIN32
|
|
#include <pthread.h>
|
|
#endif
|
|
|
|
using namespace torch;
|
|
|
|
static bool in_bad_fork = false; // True for children forked after cuda init
|
|
|
|
#ifndef WIN32
|
|
// Called in the forked child if cuda has already been initialized
|
|
static void forked_child() {
|
|
in_bad_fork = true;
|
|
torch::utils::set_requires_cuda_init(true);
|
|
}
|
|
#endif
|
|
|
|
// Should be called before the first cuda call.
|
|
// Note: This is distinct from initExtension because a stub cuda implementation
|
|
// has some working functions (e.g. device_count) but cannot fully initialize.
|
|
static void poison_fork() {
|
|
#ifndef WIN32
|
|
static c10::once_flag flag;
|
|
c10::call_once(flag, [] { pthread_atfork(nullptr, nullptr, forked_child); });
|
|
#endif
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// CUDA management methods
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void THCPModule_setDevice(int device) {
|
|
c10::cuda::set_device(static_cast<c10::DeviceIndex>(device));
|
|
}
|
|
|
|
PyObject* THCPModule_setDevice_wrap(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice");
|
|
int64_t device = THPUtils_unpackLong(arg);
|
|
|
|
torch::utils::cuda_lazy_init();
|
|
THCPModule_setDevice(device);
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_exchangeDevice(PyObject* self, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to exchangeDevice");
|
|
int64_t device = THPUtils_unpackLong(arg);
|
|
if (device < 0) {
|
|
return THPUtils_packInt32(-1);
|
|
}
|
|
|
|
torch::utils::cuda_lazy_init();
|
|
auto current_device = c10::cuda::current_device();
|
|
if (current_device != device) {
|
|
THCPModule_setDevice(device);
|
|
}
|
|
|
|
return THPUtils_packInt32(static_cast<int>(current_device));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_getDevice_wrap(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
torch::utils::cuda_lazy_init();
|
|
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
|
|
auto device = static_cast<int>(c10::cuda::current_device());
|
|
return THPUtils_packInt32(device);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_canDeviceAccessPeer_wrap(PyObject* self, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
PyObject* arg1 = nullptr;
|
|
PyObject* arg2 = nullptr;
|
|
if (!PyArg_ParseTuple(args, "OO", &arg1, &arg2)) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"can_device_peer_access",
|
|
1,
|
|
"(int device, int peer_device);");
|
|
return nullptr;
|
|
}
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg1), "invalid argument to canDeviceAccessPeer");
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg2), "invalid argument to canDeviceAccessPeer");
|
|
int64_t device = THPUtils_unpackLong(arg1);
|
|
int64_t peer_device = THPUtils_unpackLong(arg2);
|
|
|
|
torch::utils::cuda_lazy_init();
|
|
auto can_access = at::cuda::canDeviceAccessPeer(device, peer_device);
|
|
return PyBool_FromLong(can_access);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_getDeviceCount_wrap(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
poison_fork();
|
|
return THPUtils_packUInt64(at::cuda::device_count());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_getArchFlags(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
poison_fork();
|
|
#ifdef CUDA_ARCH_FLAGS
|
|
static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS);
|
|
return THPUtils_packString(flags);
|
|
#else
|
|
Py_RETURN_NONE;
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THCPModule_isInBadFork(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return PyBool_FromLong(in_bad_fork);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_getCurrentStream_wrap(
|
|
PyObject* /* unused */,
|
|
PyObject* device_index) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
|
|
int64_t device = THPUtils_unpackLong(device_index);
|
|
auto stream = at::cuda::getCurrentCUDAStream(device);
|
|
PyObject* output_tuple = PyTuple_New(3);
|
|
PyTuple_SetItem(
|
|
output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id())));
|
|
PyTuple_SetItem(
|
|
output_tuple,
|
|
1,
|
|
THPUtils_packInt64(static_cast<int64_t>(stream.device_index())));
|
|
PyTuple_SetItem(
|
|
output_tuple,
|
|
2,
|
|
THPUtils_packInt64(static_cast<int64_t>(stream.device_type())));
|
|
return output_tuple;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_getCurrentStream_raw(
|
|
PyObject* /* unused */,
|
|
PyObject* device_index) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
|
|
int64_t device = THPUtils_unpackLong(device_index);
|
|
return PyLong_FromVoidPtr(at::cuda::getCurrentCUDAStream(device).stream());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_getDefaultStream_wrap(
|
|
PyObject* /* unused */,
|
|
PyObject* device_index) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(device_index), "invalid argument to getDefaultStream");
|
|
int64_t device = THPUtils_unpackLong(device_index);
|
|
auto stream = at::cuda::getDefaultCUDAStream(device);
|
|
PyObject* output_tuple = PyTuple_New(3);
|
|
PyTuple_SetItem(
|
|
output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id())));
|
|
PyTuple_SetItem(
|
|
output_tuple,
|
|
1,
|
|
THPUtils_packInt64(static_cast<int64_t>(stream.device_index())));
|
|
PyTuple_SetItem(
|
|
output_tuple,
|
|
2,
|
|
THPUtils_packInt64(static_cast<int64_t>(stream.device_type())));
|
|
return output_tuple;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_setStream_wrap(
|
|
PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwargs) {
|
|
HANDLE_TH_ERRORS
|
|
int64_t stream_id = 0;
|
|
int64_t device_index = 0;
|
|
int64_t device_type = 0;
|
|
|
|
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
|
|
constexpr char* kwlist[] = {
|
|
"stream_id", "device_index", "device_type", nullptr};
|
|
if (!PyArg_ParseTupleAndKeywords(
|
|
args,
|
|
kwargs,
|
|
"|LLL",
|
|
const_cast<char**>(kwlist),
|
|
&stream_id,
|
|
&device_index,
|
|
&device_type)) {
|
|
}
|
|
|
|
auto stream = at::cuda::CUDAStream::unpack3(
|
|
stream_id, device_index, static_cast<c10::DeviceType>(device_type));
|
|
|
|
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
|
|
auto device = static_cast<int>(c10::cuda::current_device());
|
|
if (device != stream.device_index()) {
|
|
THCPModule_setDevice(stream.device_index());
|
|
}
|
|
at::cuda::setCurrentCUDAStream(stream);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_getCompiledVersion(PyObject* self, PyObject* noargs) {
|
|
#if defined(USE_ROCM)
|
|
return THPUtils_packInt64((int64_t)ROCM_VERSION);
|
|
#else
|
|
return THPUtils_packInt64((int64_t)CUDA_VERSION);
|
|
#endif
|
|
}
|
|
|
|
PyObject* THCPModule_cudaHostAllocator(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
c10::Allocator* allocator = at::cuda::getCachingHostAllocator();
|
|
return PyLong_FromVoidPtr(allocator);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_cudaCachingAllocator_raw_alloc(
|
|
PyObject* _unused,
|
|
PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
PyObject* size_o = nullptr;
|
|
PyObject* stream_o = nullptr;
|
|
if (!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"caching_allocator_alloc",
|
|
1,
|
|
"(ssize_t size, intptr_t stream);");
|
|
return nullptr;
|
|
}
|
|
auto size = PyLong_AsSsize_t(size_o);
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o));
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
void* mem =
|
|
c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream);
|
|
return PyLong_FromVoidPtr(mem);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// Unpack a PyObject to at::Scalar, throw an exception if it fails
|
|
at::Scalar as_scalar(PyObject* arg) {
|
|
// Zero-dim tensors are converted to Scalars as-is. Note this doesn't
|
|
// currently handle most NumPy scalar types except np.float64.
|
|
if (THPVariable_Check(arg)) {
|
|
return THPVariable_Unpack(arg).item();
|
|
}
|
|
|
|
if (THPUtils_checkLong(arg)) {
|
|
return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(arg)));
|
|
}
|
|
|
|
if (PyBool_Check(arg)) {
|
|
return at::Scalar(THPUtils_unpackBool(arg));
|
|
}
|
|
|
|
if (PyComplex_Check(arg)) {
|
|
return at::Scalar(THPUtils_unpackComplexDouble(arg));
|
|
}
|
|
return at::Scalar(THPUtils_unpackDouble(arg));
|
|
}
|
|
|
|
// Entrypoint for the callable created by torch.cuda.jiterator
|
|
// See jiterator.py for more details
|
|
PyObject* THCPModule_cudaJiteratorCompileAndLaunchKernel(
|
|
PyObject* _unused,
|
|
PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
|
|
PyObject* code_string_o = nullptr;
|
|
PyObject* kernel_name_o = nullptr;
|
|
PyObject* return_by_ref_o = nullptr;
|
|
PyObject* num_outputs_o = nullptr;
|
|
PyObject* tensors_o = nullptr;
|
|
PyObject* kwargs_o = nullptr;
|
|
if (!PyArg_ParseTuple(
|
|
args,
|
|
"OOOOO|O",
|
|
&code_string_o,
|
|
&kernel_name_o,
|
|
&return_by_ref_o,
|
|
&num_outputs_o,
|
|
&tensors_o,
|
|
&kwargs_o)) {
|
|
return nullptr;
|
|
}
|
|
|
|
const std::string code_string = THPUtils_unpackString(code_string_o);
|
|
const std::string kernel_name = THPUtils_unpackString(kernel_name_o);
|
|
const bool return_by_ref = THPUtils_unpackBool(return_by_ref_o);
|
|
const int num_outputs = static_cast<int>(THPUtils_unpackLong(num_outputs_o));
|
|
|
|
THPUtils_assert(
|
|
PyTuple_Check(tensors_o),
|
|
"tensors argument is expected to "
|
|
"be a tuple, but got %s",
|
|
THPUtils_typename(tensors_o));
|
|
Py_ssize_t num_tensors = PyTuple_GET_SIZE(tensors_o);
|
|
|
|
c10::SmallVector<at::Tensor> tensors;
|
|
for (const auto i : c10::irange(num_tensors)) {
|
|
PyObject* _tensor = PyTuple_GET_ITEM(tensors_o, i);
|
|
THPUtils_assert(
|
|
THPVariable_Check(_tensor),
|
|
"%d of input tensors tuple is not a Tensor",
|
|
i);
|
|
|
|
tensors.emplace_back(THPVariable_Unpack(_tensor));
|
|
}
|
|
|
|
c10::SmallVector<at::Scalar> extra_args;
|
|
PyObject* key = nullptr;
|
|
PyObject* value = nullptr;
|
|
Py_ssize_t pos = 0;
|
|
while (PyDict_Next(kwargs_o, &pos, &key, &value)) {
|
|
extra_args.emplace_back(as_scalar(value));
|
|
}
|
|
|
|
c10::SmallVector<at::Tensor> outputs = at::cuda::CompileAndLaunchKernel(
|
|
code_string,
|
|
kernel_name,
|
|
num_outputs,
|
|
tensors,
|
|
extra_args,
|
|
return_by_ref);
|
|
|
|
if (num_outputs == 1) {
|
|
return THPVariable_Wrap(outputs[0]);
|
|
} else {
|
|
PyObject* output_tuple = PyTuple_New(num_outputs);
|
|
for (int i = 0; i < num_outputs; ++i) {
|
|
PyTuple_SetItem(output_tuple, i, THPVariable_Wrap(outputs[i]));
|
|
}
|
|
return output_tuple;
|
|
}
|
|
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_cudaCachingAllocator_raw_delete(
|
|
PyObject* _unused,
|
|
PyObject* obj) {
|
|
HANDLE_TH_ERRORS
|
|
void* mem_ptr = PyLong_AsVoidPtr(obj);
|
|
c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_cudaCachingAllocator_set_allocator_settings(
|
|
PyObject* _unused,
|
|
PyObject* env) {
|
|
HANDLE_TH_ERRORS
|
|
c10::cuda::CUDACachingAllocator::setAllocatorSettings(
|
|
THPUtils_unpackString(env));
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_getAllocatorBackend(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
return THPUtils_packString(c10::cuda::CUDACachingAllocator::name());
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_cudaSynchronize(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
c10::cuda::device_synchronize();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_cudaIPCCollect(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
torch::CudaIPCCollect();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_cudaSleep(PyObject* _unused, PyObject* cycles) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'");
|
|
at::cuda::sleep(THPUtils_unpackLong(cycles));
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
// We need to ensure that as long as a thread will NEVER loose the GIL as long
|
|
// as it holds the CUDA mutex. Otherwise another thread might be scheduled and
|
|
// try to e.g. allocate a new tensor which will cause a deadlock. It's enough to
|
|
// have a single global, because it can be only set once (cudaMutex is not
|
|
// recursive) by the thread that owns the mutex (obviously there can be only one
|
|
// such thread).
|
|
static PyGILState_STATE cudaMutexGILState;
|
|
|
|
PyObject* THCPModule_cudaLockMutex(PyObject* module, PyObject* noargs) {
|
|
auto mutex = c10::cuda::getFreeMutex();
|
|
// This has to be a busy loop because we **absolutely need to** hold the GIL
|
|
// or it's a recipe for a deadlock otherwise (if we let other Python threads
|
|
// run while we have the cudaMutex, but not the GIL, they might try to e.g.
|
|
// free a CUDA tensor and acquire the cudaMutex without giving up the GIL,
|
|
// because it happens deep within THC).
|
|
while (true) {
|
|
if (mutex->try_lock())
|
|
break;
|
|
{
|
|
pybind11::gil_scoped_release no_gil;
|
|
std::this_thread::sleep_for(std::chrono::microseconds(10));
|
|
}
|
|
}
|
|
|
|
cudaMutexGILState = PyGILState_Ensure();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THCPModule_cudaUnlockMutex(PyObject* module, PyObject* noargs) {
|
|
auto mutex = c10::cuda::getFreeMutex();
|
|
PyGILState_Release(cudaMutexGILState);
|
|
mutex->unlock();
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THCPModule_hasPrimaryContext(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg), "invalid argument to has_primary_context");
|
|
int64_t device_index = static_cast<int64_t>(THPUtils_unpackLong(arg));
|
|
if (at::cuda::detail::hasPrimaryContext(device_index)) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_setMemoryFraction(PyObject* _unused, PyObject* args) {
|
|
HANDLE_TH_ERRORS
|
|
PyObject* fraction_o = nullptr;
|
|
PyObject* device_o = nullptr;
|
|
if (!PyArg_ParseTuple(args, "OO", &fraction_o, &device_o)) {
|
|
THPUtils_invalidArguments(
|
|
args,
|
|
nullptr,
|
|
"set_memory_fraction",
|
|
1,
|
|
"(double fraction, int device);");
|
|
return nullptr;
|
|
}
|
|
double fraction = PyFloat_AsDouble(fraction_o);
|
|
int64_t device = PyLong_AsLongLong(device_o);
|
|
|
|
c10::cuda::CUDACachingAllocator::setMemoryFraction(fraction, device);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THCPModule_emptyCache(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
c10::cuda::CUDACachingAllocator::emptyCache();
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THCPModule_memoryStats(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg), "invalid argument to memory_allocated");
|
|
const int device = (int)THPUtils_unpackLong(arg);
|
|
|
|
using c10::cuda::CUDACachingAllocator::DeviceStats;
|
|
using c10::cuda::CUDACachingAllocator::Stat;
|
|
using c10::cuda::CUDACachingAllocator::StatArray;
|
|
using c10::cuda::CUDACachingAllocator::StatType;
|
|
|
|
const auto statToDict = [](const Stat& stat) {
|
|
py::dict dict;
|
|
|
|
dict["current"] = stat.current;
|
|
dict["peak"] = stat.peak;
|
|
dict["allocated"] = stat.allocated;
|
|
dict["freed"] = stat.freed;
|
|
return dict;
|
|
};
|
|
|
|
const auto statArrayToDict = [=](const StatArray& statArray) {
|
|
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)>
|
|
statTypeNames = {"all", "small_pool", "large_pool"};
|
|
py::dict dict;
|
|
for (const auto i : c10::irange(statTypeNames.size())) {
|
|
dict[statTypeNames[i]] = statToDict(statArray[i]);
|
|
}
|
|
return dict;
|
|
};
|
|
|
|
const DeviceStats stats =
|
|
c10::cuda::CUDACachingAllocator::getDeviceStats(device);
|
|
|
|
py::dict result;
|
|
result["num_alloc_retries"] = stats.num_alloc_retries;
|
|
result["num_ooms"] = stats.num_ooms;
|
|
result["max_split_size"] = stats.max_split_size;
|
|
result["allocation"] = statArrayToDict(stats.allocation);
|
|
result["segment"] = statArrayToDict(stats.segment);
|
|
result["active"] = statArrayToDict(stats.active);
|
|
result["inactive_split"] = statArrayToDict(stats.inactive_split);
|
|
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
|
|
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
|
|
result["active_bytes"] = statArrayToDict(stats.active_bytes);
|
|
result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes);
|
|
result["requested_bytes"] = statArrayToDict(stats.requested_bytes);
|
|
result["oversize_allocations"] = statToDict(stats.oversize_allocations);
|
|
result["oversize_segments"] = statToDict(stats.oversize_segments);
|
|
|
|
return result.release().ptr();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_resetAccumulatedMemoryStats(
|
|
PyObject* _unused,
|
|
PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg),
|
|
"invalid argument to reset_accumulated_memory_stats");
|
|
const int device = (int)THPUtils_unpackLong(arg);
|
|
c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THCPModule_resetPeakMemoryStats(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
|
|
const int device = (int)THPUtils_unpackLong(arg);
|
|
c10::cuda::CUDACachingAllocator::resetPeakStats(device);
|
|
END_HANDLE_TH_ERRORS
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
struct Frame {
|
|
PyCodeObject* code;
|
|
int lasti;
|
|
};
|
|
|
|
struct StackContext : public c10::cuda::CUDACachingAllocator::Context {
|
|
std::vector<Frame> frames;
|
|
// Empty if cpp traces weren't enabled
|
|
std::string cpp_frames;
|
|
~StackContext() {
|
|
py::gil_scoped_acquire acquire;
|
|
for (auto& f : frames) {
|
|
Py_XDECREF((PyObject*)f.code);
|
|
}
|
|
}
|
|
static std::shared_ptr<StackContext> _gather() {
|
|
py::gil_scoped_acquire acquire;
|
|
auto r = std::make_shared<StackContext>();
|
|
PyFrameObject* f = PyEval_GetFrame();
|
|
Py_XINCREF(f);
|
|
while (f) {
|
|
r->frames.emplace_back(Frame{PyFrame_GetCode(f), PyFrame_GetLasti(f)});
|
|
auto f_back = PyFrame_GetBack(f);
|
|
Py_XDECREF(f);
|
|
f = f_back;
|
|
}
|
|
return r;
|
|
}
|
|
static std::shared_ptr<c10::cuda::CUDACachingAllocator::Context> gather() {
|
|
return _gather();
|
|
}
|
|
static std::shared_ptr<c10::cuda::CUDACachingAllocator::Context>
|
|
gather_with_cpp() {
|
|
auto r = _gather();
|
|
r->cpp_frames = c10::get_backtrace();
|
|
return std::move(r);
|
|
}
|
|
};
|
|
|
|
PyObject* THCPModule_memorySnapshot(PyObject* _unused, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
|
|
using c10::cuda::CUDACachingAllocator::BlockInfo;
|
|
using c10::cuda::CUDACachingAllocator::History;
|
|
using c10::cuda::CUDACachingAllocator::SegmentInfo;
|
|
|
|
py::str device_s = "device";
|
|
py::str address_s = "address";
|
|
py::str total_size_s = "total_size";
|
|
py::str allocated_size_s = "allocated_size";
|
|
py::str active_size_s = "active_size";
|
|
py::str requested_size_s = "requested_size";
|
|
py::str stream_s = "stream";
|
|
py::str segment_type_s = "segment_type";
|
|
py::str large_s = "large";
|
|
py::str small_s = "small";
|
|
py::str size_s = "size";
|
|
py::str state_s = "state";
|
|
py::str active_allocated_s = "active_allocated";
|
|
py::str active_pending_free_s = "active_pending_free";
|
|
py::str inactive_s = "inactive";
|
|
py::str addr_s = "addr";
|
|
py::str real_size_s = "real_size";
|
|
py::str filename_s = "filename";
|
|
py::str name_s = "name";
|
|
py::str line_s = "line";
|
|
py::str frames_s = "frames";
|
|
py::str cpp_frames_s = "cpp_frames";
|
|
py::str history_s = "history";
|
|
py::str blocks_s = "blocks";
|
|
|
|
std::unordered_map<StackContext*, py::list> cached_frames;
|
|
const auto get_frames = [&](StackContext* sc) -> py::list {
|
|
auto it = cached_frames.find(sc);
|
|
if (it != cached_frames.end()) {
|
|
return it->second;
|
|
}
|
|
py::list frames;
|
|
for (auto& f : sc->frames) {
|
|
py::dict frame;
|
|
frame[filename_s] =
|
|
py::reinterpret_borrow<py::object>(f.code->co_filename);
|
|
frame[name_s] = py::reinterpret_borrow<py::object>(f.code->co_name);
|
|
frame[line_s] = PyCode_Addr2Line(f.code, f.lasti);
|
|
frames.append(std::move(frame));
|
|
}
|
|
cached_frames.insert({sc, frames});
|
|
return frames;
|
|
};
|
|
|
|
const auto segmentInfoToDict = [&](const SegmentInfo& segmentInfo) {
|
|
py::dict segmentDict;
|
|
segmentDict[device_s] = segmentInfo.device;
|
|
segmentDict[address_s] = segmentInfo.address;
|
|
segmentDict[total_size_s] = segmentInfo.total_size;
|
|
segmentDict[allocated_size_s] = segmentInfo.allocated_size;
|
|
segmentDict[active_size_s] = segmentInfo.active_size;
|
|
segmentDict[requested_size_s] = segmentInfo.requested_size;
|
|
// we want the python objects to pickle easily so use an int to
|
|
// represent the stream rather than a torch.cuda.stream object
|
|
segmentDict[stream_s] = int64_t(segmentInfo.stream);
|
|
segmentDict[segment_type_s] = (segmentInfo.is_large ? large_s : small_s);
|
|
|
|
py::list blocks;
|
|
for (const auto& blockInfo : segmentInfo.blocks) {
|
|
py::dict blockDict;
|
|
blockDict[size_s] = blockInfo.size;
|
|
blockDict[requested_size_s] = blockInfo.requested_size;
|
|
blockDict[state_s] =
|
|
(blockInfo.allocated
|
|
? active_allocated_s
|
|
: (blockInfo.active ? active_pending_free_s : inactive_s));
|
|
if (blockInfo.history.size()) {
|
|
py::list history;
|
|
for (const History& h : blockInfo.history) {
|
|
py::dict history_entry;
|
|
history_entry[addr_s] = (int64_t)h.addr;
|
|
history_entry[real_size_s] = h.real_size;
|
|
if (h.context) {
|
|
auto sc = (StackContext*)h.context.get();
|
|
history_entry[frames_s] = get_frames(sc);
|
|
if (!sc->cpp_frames.empty()) {
|
|
history_entry[cpp_frames_s] = py::cast(sc->cpp_frames);
|
|
}
|
|
}
|
|
history.append(std::move(history_entry));
|
|
}
|
|
blockDict[history_s] = std::move(history);
|
|
}
|
|
blocks.append(blockDict);
|
|
}
|
|
segmentDict[blocks_s] = blocks;
|
|
|
|
return segmentDict;
|
|
};
|
|
|
|
auto snapshot = c10::cuda::CUDACachingAllocator::snapshot();
|
|
py::list segments;
|
|
|
|
for (const auto& segmentInfo : snapshot.segments) {
|
|
segments.append(segmentInfoToDict(segmentInfo));
|
|
}
|
|
|
|
py::list traces;
|
|
py::str action_s = "action";
|
|
py::str alloc_s = "alloc";
|
|
py::str free_requested_s = "free_requested";
|
|
py::str free_completed_s = "free_completed";
|
|
py::str segment_alloc_s = "segment_alloc";
|
|
py::str segment_free_s = "segment_free";
|
|
py::str snapshot_s = "snapshot";
|
|
py::str oom_s = "oom";
|
|
py::str device_free_s = "device_free";
|
|
|
|
using namespace c10::cuda::CUDACachingAllocator;
|
|
|
|
auto action_to_str = [&](TraceEntry::Action action) {
|
|
switch (action) {
|
|
case TraceEntry::ALLOC:
|
|
return alloc_s;
|
|
case TraceEntry::FREE_REQUESTED:
|
|
return free_requested_s;
|
|
case TraceEntry::FREE_COMPLETED:
|
|
return free_completed_s;
|
|
case TraceEntry::SEGMENT_ALLOC:
|
|
return segment_alloc_s;
|
|
case TraceEntry::SEGMENT_FREE:
|
|
return segment_free_s;
|
|
case TraceEntry::OOM:
|
|
return oom_s;
|
|
case TraceEntry::SNAPSHOT:
|
|
return snapshot_s;
|
|
}
|
|
throw std::runtime_error("unreachable");
|
|
};
|
|
|
|
for (const auto& traceInfo : snapshot.device_traces) {
|
|
py::list trace;
|
|
for (const auto& te : traceInfo) {
|
|
py::dict trace_entry;
|
|
if (te.context_) {
|
|
// without further compression frames can get really large on dump
|
|
auto sc = (StackContext*)te.context_.get();
|
|
trace_entry[frames_s] = get_frames(sc);
|
|
if (!sc->cpp_frames.empty()) {
|
|
trace_entry[cpp_frames_s] = py::cast(sc->cpp_frames);
|
|
}
|
|
}
|
|
trace_entry[action_s] = action_to_str(te.action_);
|
|
trace_entry[TraceEntry::OOM == te.action_ ? device_free_s : addr_s] =
|
|
te.addr_;
|
|
trace_entry[size_s] = te.size_;
|
|
trace_entry[stream_s] = int64_t(te.stream_);
|
|
trace.append(trace_entry);
|
|
}
|
|
traces.append(trace);
|
|
}
|
|
|
|
py::dict result;
|
|
result["segments"] = segments;
|
|
result["device_traces"] = traces;
|
|
|
|
return result.release().ptr();
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_attachOutOfMemoryObserver(
|
|
PyObject* _unused,
|
|
PyObject* observer) {
|
|
HANDLE_TH_ERRORS
|
|
Py_XINCREF(observer);
|
|
auto obs = [observer](
|
|
int64_t device,
|
|
int64_t alloc,
|
|
int64_t device_allocated,
|
|
int64_t device_free) {
|
|
py::gil_scoped_acquire g;
|
|
PyObject* result = PyObject_CallFunction(
|
|
observer, "LLLL", device, alloc, device_allocated, device_free);
|
|
if (!result) {
|
|
throw py::error_already_set();
|
|
}
|
|
Py_XDECREF(result);
|
|
};
|
|
c10::cuda::CUDACachingAllocator::attachOutOfMemoryObserver(std::move(obs));
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_cudaSetSyncDebugMode(PyObject* _unused, PyObject* arg) {
|
|
HANDLE_TH_ERRORS
|
|
TORCH_WARN_ONCE(
|
|
"Synchronization debug mode is a prototype feature and does not yet detect all "
|
|
"synchronizing operations");
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg), "invalid argument to set_sync_debug_mode");
|
|
int64_t debug_mode = THPUtils_unpackLong(arg);
|
|
TORCH_CHECK(
|
|
debug_mode >= 0 && debug_mode <= 2,
|
|
"invalid value of debug_mode, expected one of 0,1,2");
|
|
c10::cuda::SyncDebugMode l;
|
|
switch (debug_mode) {
|
|
case 0:
|
|
l = c10::cuda::SyncDebugMode::L_DISABLED;
|
|
break;
|
|
case 1:
|
|
l = c10::cuda::SyncDebugMode::L_WARN;
|
|
break;
|
|
case 2:
|
|
l = c10::cuda::SyncDebugMode::L_ERROR;
|
|
break;
|
|
default:
|
|
l = c10::cuda::SyncDebugMode::L_DISABLED;
|
|
break; // can't happen
|
|
}
|
|
c10::cuda::warning_state().set_sync_debug_mode(l);
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_cudaGetSyncDebugMode(PyObject* self, PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
auto debug_mode = c10::cuda::warning_state().get_sync_debug_mode();
|
|
switch (debug_mode) {
|
|
case c10::cuda::SyncDebugMode::L_DISABLED:
|
|
return THPUtils_packInt32(0);
|
|
case c10::cuda::SyncDebugMode::L_WARN:
|
|
return THPUtils_packInt32(1);
|
|
case c10::cuda::SyncDebugMode::L_ERROR:
|
|
return THPUtils_packInt32(2);
|
|
default:
|
|
return THPUtils_packInt32(-1); // can't happen
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Cuda module initialization
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static void registerCudaDeviceProperties(PyObject* module) {
|
|
// Add _cudaDevicePropertires class to torch._C
|
|
auto m = py::handle(module).cast<py::module>();
|
|
py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties")
|
|
.def_readonly("name", &cudaDeviceProp::name)
|
|
.def_readonly("major", &cudaDeviceProp::major)
|
|
.def_readonly("minor", &cudaDeviceProp::minor)
|
|
.def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard)
|
|
.def_readonly("is_integrated", &cudaDeviceProp::integrated)
|
|
.def_readonly(
|
|
"multi_processor_count", &cudaDeviceProp::multiProcessorCount)
|
|
.def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem)
|
|
.def("__repr__", [](const cudaDeviceProp& prop) {
|
|
std::ostringstream stream;
|
|
stream << "_CudaDeviceProperties(name='" << prop.name
|
|
<< "', major=" << prop.major << ", minor=" << prop.minor
|
|
<< ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
|
|
<< "MB, multi_processor_count=" << prop.multiProcessorCount
|
|
<< ")";
|
|
return stream.str();
|
|
});
|
|
|
|
m.def(
|
|
"_cuda_recordMemoryHistory",
|
|
[](bool enabled,
|
|
bool record_context,
|
|
bool record_context_cpp,
|
|
Py_ssize_t alloc_trace_max_entries,
|
|
bool alloc_trace_record_context) {
|
|
c10::cuda::CUDACachingAllocator::recordHistory(
|
|
enabled,
|
|
record_context ? (record_context_cpp ? StackContext::gather_with_cpp
|
|
: StackContext::gather)
|
|
: nullptr,
|
|
alloc_trace_max_entries,
|
|
alloc_trace_record_context);
|
|
});
|
|
}
|
|
|
|
static void registerCudaPluggableAllocator(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
|
|
py::class_<
|
|
c10::cuda::CUDACachingAllocator::CUDAAllocator,
|
|
std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>>(
|
|
m, "_cuda_CUDAAllocator");
|
|
m.def("_cuda_getAllocator", []() {
|
|
return py::cast(torch::cuda::CUDAPluggableAllocator::getCurrentAllocator());
|
|
});
|
|
|
|
m.def(
|
|
"_cuda_changeCurrentAllocator",
|
|
[](std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>
|
|
allocator) {
|
|
torch::cuda::CUDAPluggableAllocator::changeCurrentAllocator(allocator);
|
|
});
|
|
py::class_<
|
|
torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator,
|
|
c10::cuda::CUDACachingAllocator::CUDAAllocator,
|
|
std::shared_ptr<
|
|
torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator>>(
|
|
m, "_CUDAPluggableAllocator")
|
|
.def(
|
|
"set_init_fn",
|
|
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
|
|
uint64_t func_ptr) {
|
|
using FuncType = void(int);
|
|
std::function<FuncType> func =
|
|
reinterpret_cast<FuncType*>(func_ptr);
|
|
self.set_init_fn(func);
|
|
})
|
|
.def(
|
|
"set_reset_fn",
|
|
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
|
|
uint64_t func_ptr) {
|
|
using FuncType = void();
|
|
std::function<FuncType> func =
|
|
reinterpret_cast<FuncType*>(func_ptr);
|
|
self.set_reset_fn(func);
|
|
})
|
|
.def(
|
|
"set_memory_fraction_fn",
|
|
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
|
|
uint64_t func_ptr) {
|
|
using FuncType = void(double, int);
|
|
std::function<FuncType> func =
|
|
reinterpret_cast<FuncType*>(func_ptr);
|
|
self.set_memory_fraction_fn(func);
|
|
})
|
|
.def(
|
|
"set_base_alloc_fn",
|
|
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
|
|
uint64_t func_ptr) {
|
|
using FuncType = void*(void*, size_t*);
|
|
std::function<FuncType> func =
|
|
reinterpret_cast<FuncType*>(func_ptr);
|
|
self.set_base_alloc_fn(func);
|
|
})
|
|
.def(
|
|
"set_record_stream_fn",
|
|
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
|
|
uint64_t func_ptr) {
|
|
using FuncType = void(void*, cudaStream_t);
|
|
std::function<FuncType> func =
|
|
reinterpret_cast<FuncType*>(func_ptr);
|
|
self.set_record_stream_fn(func);
|
|
})
|
|
.def(
|
|
"set_capture_begin_fn",
|
|
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
|
|
uint64_t func_ptr) {
|
|
using FuncType =
|
|
void(int, c10::cuda::CaptureId_t, c10::cuda::MempoolId_t);
|
|
std::function<FuncType> func =
|
|
reinterpret_cast<FuncType*>(func_ptr);
|
|
self.set_capture_begin_fn(func);
|
|
})
|
|
.def(
|
|
"set_capture_about_to_end_fn",
|
|
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
|
|
uint64_t func_ptr) {
|
|
using FuncType = void(int, c10::cuda::CaptureId_t);
|
|
std::function<FuncType> func =
|
|
reinterpret_cast<FuncType*>(func_ptr);
|
|
self.set_capture_about_to_end_fn(func);
|
|
})
|
|
.def(
|
|
"set_capture_ended_fn",
|
|
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
|
|
uint64_t func_ptr) {
|
|
using FuncType = void(int, c10::cuda::CaptureId_t);
|
|
std::function<FuncType> func =
|
|
reinterpret_cast<FuncType*>(func_ptr);
|
|
self.set_capture_ended_fn(func);
|
|
})
|
|
.def(
|
|
"set_capture_destroy_fn",
|
|
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
|
|
uint64_t func_ptr) {
|
|
using FuncType = void(int, c10::cuda::MempoolId_t);
|
|
std::function<FuncType> func =
|
|
reinterpret_cast<FuncType*>(func_ptr);
|
|
self.set_capture_destroy_fn(func);
|
|
});
|
|
m.def("_cuda_customAllocator", [](uint64_t malloc_ptr, uint64_t free_ptr) {
|
|
using MallocFuncType = void*(size_t, int, cudaStream_t);
|
|
using FreeFuncType = void(void*, size_t, int, cudaStream_t);
|
|
std::function<MallocFuncType> malloc_fn =
|
|
reinterpret_cast<MallocFuncType*>(malloc_ptr);
|
|
std::function<FreeFuncType> free_fn =
|
|
reinterpret_cast<FreeFuncType*>(free_ptr);
|
|
return torch::cuda::CUDAPluggableAllocator::createCustomAllocator(
|
|
malloc_fn, free_fn);
|
|
});
|
|
}
|
|
|
|
static void bindGetDeviceProperties(PyObject* module) {
|
|
// Add method to torch.cuda
|
|
auto m = py::handle(module).cast<py::module>();
|
|
m.def(
|
|
"_get_device_properties",
|
|
[](int device) -> cudaDeviceProp* {
|
|
return at::cuda::getDeviceProperties(device);
|
|
},
|
|
py::return_value_policy::reference);
|
|
}
|
|
|
|
// Callback for python part. Used for additional initialization of python
|
|
// classes
|
|
static PyObject* THCPModule_initExtension(PyObject* self, PyObject* noargs) {
|
|
#if C10_ASAN_ENABLED
|
|
TORCH_WARN(
|
|
"torch.cuda: your pytorch binary has address sanitizer (asan) built in, "
|
|
"asan is currently not compatible with torch.cuda module, "
|
|
"you might get unexpected behavior (eg. out of memory, crash, etc.), "
|
|
"please rebuild pytorch without asan if you need to use this module");
|
|
#endif
|
|
HANDLE_TH_ERRORS
|
|
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
|
|
poison_fork();
|
|
at::globalContext().lazyInitCUDA();
|
|
|
|
auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda"));
|
|
if (!m)
|
|
throw python_error();
|
|
|
|
bool has_half = true;
|
|
|
|
auto set_module_attr = [&](const char* name, PyObject* v) {
|
|
// PyObject_SetAttrString doesn't steal reference. So no need to incref.
|
|
if (PyObject_SetAttrString(m, name, v) < 0) {
|
|
throw python_error();
|
|
}
|
|
};
|
|
|
|
set_module_attr("has_magma", at::hasMAGMA() ? Py_True : Py_False);
|
|
set_module_attr("has_half", has_half ? Py_True : Py_False);
|
|
|
|
auto num_gpus = c10::cuda::device_count();
|
|
auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus));
|
|
for (const auto i : c10::irange(num_gpus)) {
|
|
auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator(
|
|
at::cuda::detail::getDefaultCUDAGenerator(i));
|
|
// This reference is meant to be given away, so no need to incref here.
|
|
PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen);
|
|
}
|
|
set_module_attr("default_generators", default_cuda_generators);
|
|
bindGetDeviceProperties(m);
|
|
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_getCurrentBlasHandle_wrap(
|
|
PyObject* self,
|
|
PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
|
|
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
|
|
return PyLong_FromVoidPtr(handle);
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THCPModule_clearBlasWorkspaces_wrap(
|
|
PyObject* self,
|
|
PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
at::cuda::clearCublasWorkspaces();
|
|
Py_RETURN_NONE;
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_rocm_is_backward_pass(
|
|
PyObject* _unused,
|
|
PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
#if USE_ROCM
|
|
if (at::ROCmBackwardPassGuard::is_backward_pass()) {
|
|
Py_RETURN_TRUE;
|
|
} else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
#else
|
|
Py_RETURN_FALSE;
|
|
#endif
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
static PyObject* THCPModule_isCurrentStreamCapturing_wrap(
|
|
PyObject* self,
|
|
PyObject* noargs) {
|
|
HANDLE_TH_ERRORS
|
|
// If there's no cuda context, at::cuda::currentStreamCaptureStatus returns
|
|
// CaptureStatus::None without initializing a context.
|
|
if (at::cuda::currentStreamCaptureStatus() == at::cuda::CaptureStatus::None) {
|
|
Py_RETURN_FALSE;
|
|
} else {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyObject* THCPModule_setBenchmarkLimitCuDNN(PyObject* _unused, PyObject* arg) {
|
|
THPUtils_assert(
|
|
THPUtils_checkLong(arg),
|
|
"set_benchmark_limit_cudnn expects an int, "
|
|
"but got %s",
|
|
THPUtils_typename(arg));
|
|
auto benchmark_limit = static_cast<int>(THPUtils_unpackLong(arg));
|
|
#if defined(USE_ROCM)
|
|
TORCH_WARN_ONCE(
|
|
"cuDNN Benchmark limit is not supported in MIOpen and will have no effect.");
|
|
#endif
|
|
#if AT_CUDNN_ENABLED()
|
|
#if HAS_CUDNN_V8()
|
|
at::globalContext().setBenchmarkLimitCuDNN(benchmark_limit);
|
|
#else
|
|
TORCH_WARN_ONCE(
|
|
"cuDNN Benchmark limit is not supported with cuDNN v7 API and will have no effect.");
|
|
#endif
|
|
#endif
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyObject* THCPModule_benchmarkLimitCuDNN(PyObject* _unused, PyObject* noargs) {
|
|
return THPUtils_packInt32(at::globalContext().benchmarkLimitCuDNN());
|
|
}
|
|
|
|
// NOLINTNEXTLINE(modernize-avoid-c-arrays,
|
|
// cppcoreguidelines-avoid-non-const-global-variables,
|
|
// cppcoreguidelines-avoid-c-arrays)
|
|
static struct PyMethodDef _THCPModule_methods[] = {
|
|
{"_cuda_init", THCPModule_initExtension, METH_NOARGS, nullptr},
|
|
{"_cuda_setDevice", THCPModule_setDevice_wrap, METH_O, nullptr},
|
|
{"_cuda_exchangeDevice", THCPModule_exchangeDevice, METH_O, nullptr},
|
|
{"_cuda_getDevice", THCPModule_getDevice_wrap, METH_NOARGS, nullptr},
|
|
{"_cuda_getDeviceCount",
|
|
THCPModule_getDeviceCount_wrap,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_cuda_canDeviceAccessPeer",
|
|
THCPModule_canDeviceAccessPeer_wrap,
|
|
METH_VARARGS,
|
|
nullptr},
|
|
{"_cuda_getArchFlags", THCPModule_getArchFlags, METH_NOARGS, nullptr},
|
|
{"_cuda_isInBadFork", THCPModule_isInBadFork, METH_NOARGS, nullptr},
|
|
{"_cuda_getCurrentStream",
|
|
THCPModule_getCurrentStream_wrap,
|
|
METH_O,
|
|
nullptr},
|
|
{"_cuda_getCurrentRawStream",
|
|
THCPModule_getCurrentStream_raw,
|
|
METH_O,
|
|
nullptr},
|
|
{"_cuda_getDefaultStream",
|
|
THCPModule_getDefaultStream_wrap,
|
|
METH_O,
|
|
nullptr},
|
|
{"_cuda_getCurrentBlasHandle",
|
|
THCPModule_getCurrentBlasHandle_wrap,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_cuda_clearCublasWorkspaces",
|
|
THCPModule_clearBlasWorkspaces_wrap,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_cuda_isCurrentStreamCapturing",
|
|
THCPModule_isCurrentStreamCapturing_wrap,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_cuda_setStream",
|
|
castPyCFunctionWithKeywords(THCPModule_setStream_wrap),
|
|
METH_VARARGS | METH_KEYWORDS,
|
|
nullptr},
|
|
{"_cuda_getCompiledVersion",
|
|
THCPModule_getCompiledVersion,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_cuda_hasPrimaryContext", THCPModule_hasPrimaryContext, METH_O, nullptr},
|
|
{"_cuda_setMemoryFraction",
|
|
THCPModule_setMemoryFraction,
|
|
METH_VARARGS,
|
|
nullptr},
|
|
{"_cuda_emptyCache", THCPModule_emptyCache, METH_NOARGS, nullptr},
|
|
{"_cuda_memoryStats", THCPModule_memoryStats, METH_O, nullptr},
|
|
{"_cuda_resetAccumulatedMemoryStats",
|
|
THCPModule_resetAccumulatedMemoryStats,
|
|
METH_O,
|
|
nullptr},
|
|
{"_cuda_resetPeakMemoryStats",
|
|
THCPModule_resetPeakMemoryStats,
|
|
METH_O,
|
|
nullptr},
|
|
{"_cuda_memorySnapshot", THCPModule_memorySnapshot, METH_NOARGS, nullptr},
|
|
{"_cuda_attach_out_of_memory_observer",
|
|
THCPModule_attachOutOfMemoryObserver,
|
|
METH_O,
|
|
nullptr},
|
|
{"_cuda_cudaHostAllocator",
|
|
THCPModule_cudaHostAllocator,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_cuda_cudaCachingAllocator_raw_alloc",
|
|
THCPModule_cudaCachingAllocator_raw_alloc,
|
|
METH_VARARGS,
|
|
nullptr},
|
|
{"_cuda_cudaCachingAllocator_raw_delete",
|
|
THCPModule_cudaCachingAllocator_raw_delete,
|
|
METH_O,
|
|
nullptr},
|
|
{"_cuda_cudaCachingAllocator_set_allocator_settings",
|
|
THCPModule_cudaCachingAllocator_set_allocator_settings,
|
|
METH_O,
|
|
nullptr},
|
|
{"_cuda_getAllocatorBackend",
|
|
THCPModule_getAllocatorBackend,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_cuda_synchronize", THCPModule_cudaSynchronize, METH_NOARGS, nullptr},
|
|
{"_cuda_ipc_collect", THCPModule_cudaIPCCollect, METH_NOARGS, nullptr},
|
|
{"_cuda_sleep", THCPModule_cudaSleep, METH_O, nullptr},
|
|
{"_cuda_lock_mutex", THCPModule_cudaLockMutex, METH_NOARGS, nullptr},
|
|
{"_cuda_unlock_mutex", THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr},
|
|
{"_cuda_set_sync_debug_mode",
|
|
THCPModule_cudaSetSyncDebugMode,
|
|
METH_O,
|
|
nullptr},
|
|
{"_cuda_get_sync_debug_mode",
|
|
THCPModule_cudaGetSyncDebugMode,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_cuda_jiterator_compile_and_launch_kernel",
|
|
THCPModule_cudaJiteratorCompileAndLaunchKernel,
|
|
METH_VARARGS,
|
|
nullptr},
|
|
{"_cuda_get_cudnn_benchmark_limit",
|
|
THCPModule_benchmarkLimitCuDNN,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{"_cuda_set_cudnn_benchmark_limit",
|
|
THCPModule_setBenchmarkLimitCuDNN,
|
|
METH_O,
|
|
nullptr},
|
|
#ifdef USE_NCCL
|
|
{"_nccl_version", THCPModule_nccl_version, METH_NOARGS, nullptr},
|
|
{"_nccl_unique_id", THCPModule_nccl_unique_id, METH_NOARGS, nullptr},
|
|
{"_nccl_init_rank", THCPModule_nccl_init_rank, METH_VARARGS, nullptr},
|
|
{"_nccl_reduce", THCPModule_nccl_reduce, METH_VARARGS, nullptr},
|
|
{"_nccl_all_reduce", THCPModule_nccl_all_reduce, METH_VARARGS, nullptr},
|
|
{"_nccl_broadcast", THCPModule_nccl_broadcast, METH_VARARGS, nullptr},
|
|
{"_nccl_all_gather", THCPModule_nccl_all_gather, METH_VARARGS, nullptr},
|
|
{"_nccl_reduce_scatter",
|
|
THCPModule_nccl_reduce_scatter,
|
|
METH_VARARGS,
|
|
nullptr},
|
|
#endif
|
|
{"_rocm_is_backward_pass",
|
|
THCPModule_rocm_is_backward_pass,
|
|
METH_NOARGS,
|
|
nullptr},
|
|
{nullptr}};
|
|
|
|
PyMethodDef* THCPModule_methods() {
|
|
return _THCPModule_methods;
|
|
}
|
|
|
|
namespace torch {
|
|
namespace cuda {
|
|
|
|
namespace shared {
|
|
|
|
void initCudartBindings(PyObject* module);
|
|
void initNvtxBindings(PyObject* module);
|
|
#if defined(USE_CUDNN) || defined(USE_ROCM)
|
|
void initCudnnBindings(PyObject* module);
|
|
#endif
|
|
|
|
} // namespace shared
|
|
|
|
void initModule(PyObject* module) {
|
|
python::initCommMethods(module);
|
|
// As weird as it seems, this file is also compiled for ROCm,
|
|
// so this condition might not always be true...
|
|
shared::initCudartBindings(module);
|
|
shared::initNvtxBindings(module);
|
|
#if defined(USE_CUDNN) || defined(USE_ROCM)
|
|
shared::initCudnnBindings(module);
|
|
#endif
|
|
registerCudaDeviceProperties(module);
|
|
registerCudaPluggableAllocator(module);
|
|
}
|
|
|
|
} // namespace cuda
|
|
} // namespace torch
|