mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Just noticed while building on a machine without cudnn present - it was building but the runtime failed since some methods weren't bound Pull Request resolved: https://github.com/pytorch/pytorch/pull/16701 Differential Revision: D13937247 Pulled By: dzhulgakov fbshipit-source-id: c81f05be7a9e64a1a8591036dcf8692c0ed4064e
170 lines
5.7 KiB
C++
170 lines
5.7 KiB
C++
// Note(jiayq): the import_array function is done inside
|
|
// caffe2_python.cc. Read
|
|
// http://docs.scipy.org/doc/numpy-1.10.1/reference/c-api.array.html#miscellaneous
|
|
// for more details.
|
|
|
|
#define NO_IMPORT_ARRAY
|
|
|
|
#include "pybind_state.h"
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
#ifdef CAFFE2_USE_CUDNN
|
|
#include "caffe2/core/common_cudnn.h"
|
|
#endif // CAFFE2_USE_CUDNN
|
|
#include "caffe2/core/context_gpu.h"
|
|
#include "caffe2/operators/operator_fallback_gpu.h"
|
|
#include "caffe2/python/pybind_state_registry.h"
|
|
|
|
#ifdef CAFFE2_USE_TRT
|
|
#include "caffe2/contrib/tensorrt/tensorrt_tranformer.h"
|
|
#endif // CAFFE2_USE_TRT
|
|
|
|
namespace caffe2 {
|
|
namespace python {
|
|
|
|
REGISTER_CUDA_OPERATOR(Python, GPUFallbackOp);
|
|
REGISTER_CUDA_OPERATOR(
|
|
PythonGradient,
|
|
GPUFallbackOp);
|
|
|
|
REGISTER_CUDA_OPERATOR(PythonDLPack, GPUFallbackOp);
|
|
REGISTER_CUDA_OPERATOR(PythonDLPackGradient, GPUFallbackOp);
|
|
|
|
REGISTER_BLOB_FEEDER(CUDA, TensorFeeder<CUDAContext>);
|
|
|
|
namespace py = pybind11;
|
|
|
|
void addCUDAGlobalMethods(py::module& m) {
|
|
m.def("num_cuda_devices", &NumCudaDevices);
|
|
m.def("get_cuda_version", &CudaVersion);
|
|
#ifdef CAFFE2_USE_CUDNN
|
|
m.def("get_cudnn_version", &cudnnCompiledVersion);
|
|
m.attr("cudnn_convolution_fwd_algo_count") = py::int_((int) CUDNN_CONVOLUTION_FWD_ALGO_COUNT);
|
|
m.attr("cudnn_convolution_bwd_data_algo_count") = py::int_((int) CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT);
|
|
m.attr("cudnn_convolution_bwd_filter_algo_count") = py::int_((int) CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT);
|
|
#else
|
|
m.def("get_cudnn_version", [](){ return static_cast<size_t>(0);});
|
|
m.attr("cudnn_convolution_fwd_algo_count") = py::int_(0);
|
|
m.attr("cudnn_convolution_bwd_data_algo_count") = py::int_(0);
|
|
m.attr("cudnn_convolution_bwd_filter_algo_count") = py::int_(0);
|
|
#endif
|
|
m.def("get_cuda_peer_access_pattern", []() {
|
|
std::vector<std::vector<bool>> pattern;
|
|
CAFFE_ENFORCE(caffe2::GetCudaPeerAccessPattern(&pattern));
|
|
return pattern;
|
|
});
|
|
m.def("get_device_properties", [](int deviceid) {
|
|
auto& prop = GetDeviceProperty(deviceid);
|
|
std::map<std::string, py::object> obj;
|
|
obj["name"] = py::cast(prop.name);
|
|
obj["major"] = py::cast(prop.major);
|
|
obj["minor"] = py::cast(prop.minor);
|
|
obj["totalGlobalMem"] = py::cast(prop.totalGlobalMem);
|
|
return obj;
|
|
});
|
|
m.def(
|
|
"onnx_to_trt_op",
|
|
[](const py::bytes& onnx_model_str,
|
|
const std::unordered_map<std::string, std::vector<int>>&
|
|
output_size_hints,
|
|
int max_batch_size,
|
|
int max_workspace_size,
|
|
int verbosity,
|
|
bool debug_builder) -> py::bytes {
|
|
#ifdef CAFFE2_USE_TRT
|
|
TensorRTTransformer t(
|
|
max_batch_size, max_workspace_size, verbosity, debug_builder);
|
|
auto op_def =
|
|
t.BuildTrtOp(onnx_model_str.cast<std::string>(), output_size_hints);
|
|
std::string out;
|
|
op_def.SerializeToString(&out);
|
|
return py::bytes(out);
|
|
#else
|
|
CAFFE_THROW("Please build Caffe2 with USE_TENSORRT=1");
|
|
#endif // CAFFE2_USE_TRT
|
|
});
|
|
m.def(
|
|
"transform_trt",
|
|
[](const py::bytes& pred_net_str,
|
|
const std::unordered_map<std::string, std::vector<int>>& shapes,
|
|
int max_batch_size,
|
|
int max_workspace_size,
|
|
int verbosity,
|
|
bool debug_builder,
|
|
bool build_serializable_op) -> py::bytes {
|
|
#ifdef CAFFE2_USE_TRT
|
|
caffe2::NetDef pred_net;
|
|
if (!ParseProtoFromLargeString(
|
|
pred_net_str.cast<std::string>(), &pred_net)) {
|
|
LOG(ERROR) << "broken pred_net protobuf";
|
|
}
|
|
std::unordered_map<std::string, TensorShape> tensor_shapes;
|
|
for (const auto& it : shapes) {
|
|
tensor_shapes.emplace(
|
|
it.first, CreateTensorShape(it.second, TensorProto::FLOAT));
|
|
}
|
|
TensorRTTransformer ts(
|
|
max_batch_size,
|
|
max_workspace_size,
|
|
verbosity,
|
|
debug_builder,
|
|
build_serializable_op);
|
|
ts.Transform(GetCurrentWorkspace(), &pred_net, tensor_shapes);
|
|
std::string pred_net_str2;
|
|
pred_net.SerializeToString(&pred_net_str2);
|
|
return py::bytes(pred_net_str2);
|
|
#else
|
|
CAFFE_THROW("Please build Caffe2 with USE_TENSORRT=1");
|
|
#endif // CAFFE2_USE_TRT
|
|
});
|
|
};
|
|
|
|
void addCUDAObjectMethods(py::module& m) {
|
|
py::class_<DLPackWrapper<CUDAContext>>(m, "DLPackTensorCUDA")
|
|
.def_property_readonly(
|
|
"data",
|
|
[](DLPackWrapper<CUDAContext>* t) -> py::object {
|
|
CAFFE_ENFORCE_EQ(
|
|
t->device_option.device_type(),
|
|
PROTO_CUDA,
|
|
"Expected CUDA device option for CUDA tensor");
|
|
|
|
return t->data();
|
|
},
|
|
"Return DLPack tensor with tensor's data.")
|
|
.def(
|
|
"feed",
|
|
[](DLPackWrapper<CUDAContext>* t, py::object obj) {
|
|
CAFFE_ENFORCE_EQ(
|
|
t->device_option.device_type(),
|
|
PROTO_CUDA,
|
|
"Expected CUDA device option for CUDA tensor");
|
|
t->feed(obj);
|
|
},
|
|
"Copy data from given DLPack tensor into this tensor.")
|
|
.def_property_readonly(
|
|
"_shape",
|
|
[](const DLPackWrapper<CUDAContext>& t) { return t.tensor->sizes(); })
|
|
.def(
|
|
"_reshape",
|
|
[](DLPackWrapper<CUDAContext>* t, std::vector<int64_t> dims) {
|
|
t->tensor->Resize(dims);
|
|
});
|
|
}
|
|
|
|
PYBIND11_MODULE(caffe2_pybind11_state_gpu, m) {
|
|
m.doc() = "pybind11 stateful interface to Caffe2 workspaces - GPU edition";
|
|
|
|
addGlobalMethods(m);
|
|
addCUDAGlobalMethods(m);
|
|
addObjectMethods(m);
|
|
addCUDAObjectMethods(m);
|
|
for (const auto& addition : PybindAdditionRegistry()->Keys()) {
|
|
PybindAdditionRegistry()->Create(addition, m);
|
|
}
|
|
}
|
|
} // namespace python
|
|
} // namespace caffe2
|