pytorch/caffe2/python/operator_test/adagrad_test.py
rohithkrn 8c72217817 Enable boolean_mask, adadelta, adagrad fp16 on ROCm (#17235)
Summary:
-  Fix bugs, indentation for adadelta and adagrad tests to enable fp16
- Enable boolean_mask fp16  on ROCm
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17235

Differential Revision: D14240828

Pulled By: bddppq

fbshipit-source-id: ab6e8f38aa7afb83b4b879f2f4cf2277c643198f
2019-02-27 10:07:36 -08:00

219 lines
6.8 KiB
Python

from __future__ import absolute_import, division, print_function, unicode_literals
import functools
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.serialized_test.serialized_test_util as serial
import hypothesis
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core
from caffe2.python.operator_test.adagrad_test_helper import (
adagrad_sparse_test_helper,
ref_adagrad,
)
from hypothesis import HealthCheck, given, settings
class TestAdagrad(serial.SerializedTestCase):
@serial.given(
inputs=hu.tensors(n=3),
lr=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
**hu.gcs
)
def test_adagrad(self, inputs, lr, epsilon, gc, dc):
param, momentum, grad = inputs
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Adagrad",
["param", "momentum", "grad", "lr"],
["param", "momentum"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc,
op,
[param, momentum, grad, lr],
functools.partial(ref_adagrad, epsilon=epsilon),
)
@given(
inputs=hu.tensors(n=3),
lr=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
**hu.gcs_cpu_only
)
def test_adagrad_output_effective_lr(self, inputs, lr, epsilon, gc, dc):
param, momentum, grad = inputs
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Adagrad",
["param", "momentum", "grad", "lr"],
["param", "momentum", "effective_lr"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc,
op,
[param, momentum, grad, lr],
functools.partial(ref_adagrad, epsilon=epsilon, output_effective_lr=True),
)
@given(
inputs=hu.tensors(n=3),
lr=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
**hu.gcs_cpu_only
)
def test_adagrad_output_effective_lr_and_update(self, inputs, lr, epsilon, gc, dc):
param, momentum, grad = inputs
lr = np.array([lr], dtype=np.float32)
op = core.CreateOperator(
"Adagrad",
["param", "momentum", "grad", "lr"],
["param", "momentum", "effective_lr", "update"],
epsilon=epsilon,
device_option=gc,
)
self.assertReferenceChecks(
gc,
op,
[param, momentum, grad, lr],
functools.partial(
ref_adagrad, epsilon=epsilon, output_effective_lr_and_update=True
),
)
# Suppress filter_too_much health check.
# Likely caused by `assume` call falling through too often.
@settings(suppress_health_check=[HealthCheck.filter_too_much])
@given(
inputs=hu.tensors(n=3),
lr=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
**hu.gcs
)
def test_sparse_adagrad(self, inputs, lr, epsilon, gc, dc):
adagrad_sparse_test_helper(
self, inputs, lr, epsilon, None, ref_adagrad, gc, dc
)
@serial.given(
inputs=hu.tensors(n=2),
lr=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
data_strategy=st.data(),
**hu.gcs
)
def test_sparse_adagrad_empty(self, inputs, lr, epsilon, data_strategy, gc, dc):
param, momentum = inputs
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
ref_using_fp16_values = [False]
if gc == hu.gpu_do:
ref_using_fp16_values.append(True)
for ref_using_fp16 in ref_using_fp16_values:
if ref_using_fp16:
print("test_sparse_adagrad_empty with half precision embedding")
momentum_i = momentum.astype(np.float16)
param_i = param.astype(np.float16)
else:
print("test_sparse_adagrad_empty with full precision embedding")
momentum_i = momentum.astype(np.float32)
param_i = param.astype(np.float32)
adagrad_sparse_test_helper(
self,
[param_i, momentum_i, grad],
lr,
epsilon,
None,
ref_adagrad,
gc,
dc)
# Suppress filter_too_much health check.
# Likely caused by `assume` call falling through too often.
@settings(suppress_health_check=[HealthCheck.filter_too_much])
@given(
inputs=hu.tensors(n=3),
lr=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
data_strategy=st.data(),
**hu.gcs
)
def test_row_wise_sparse_adagrad(self, inputs, lr, epsilon, data_strategy, gc, dc):
adagrad_sparse_test_helper(
self,
inputs,
lr,
epsilon,
None,
functools.partial(ref_adagrad, row_wise=True),
gc,
dc,
row_wise=True,
)
@serial.given(
inputs=hu.tensors(n=2),
lr=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
epsilon=st.floats(
min_value=0.01, max_value=0.99, allow_nan=False, allow_infinity=False
),
data_strategy=st.data(),
**hu.gcs
)
def test_row_wise_sparse_adagrad_empty(
self, inputs, lr, epsilon, data_strategy, gc, dc
):
param, momentum = inputs
grad = np.empty(shape=(0,) + param.shape[1:], dtype=np.float32)
adagrad_sparse_test_helper(
self,
[param, momentum, grad],
lr,
epsilon,
None,
ref_adagrad,
gc,
dc,
row_wise=True,
)