mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
92 lines
3.3 KiB
Python
92 lines
3.3 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import schema
|
|
from caffe2.python.layers.layers import ModelLayer
|
|
|
|
import numpy as np
|
|
|
|
|
|
class RandomFourierFeatures(ModelLayer):
|
|
"""
|
|
Implementation of random fourier feature map for feature processing.
|
|
|
|
Applies sqrt(2 / output_dims) * cos(wx+b), where:
|
|
output_dims is the output feature dimensions, and
|
|
wx + b applies FC using randomized, fixed weight and bias parameters
|
|
|
|
For more information, see the original paper:
|
|
https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
|
|
|
|
Inputs:
|
|
output_dims -- output feature dimensions
|
|
sigma -- bandwidth for the Gaussian kernel estimator
|
|
w_init -- initalization options for weight parameter
|
|
b_init -- initalization options for bias parameter
|
|
|
|
"""
|
|
def __init__(
|
|
self,
|
|
model,
|
|
input_record,
|
|
output_dims,
|
|
sigma, # bandwidth
|
|
w_init=None,
|
|
b_init=None,
|
|
name='random_fourier_features',
|
|
**kwargs):
|
|
|
|
super(RandomFourierFeatures, self).__init__(model, name, input_record,
|
|
**kwargs)
|
|
assert isinstance(input_record, schema.Scalar), "Incorrect input type"
|
|
|
|
input_dims = input_record.field_type().shape[0]
|
|
assert input_dims >= 1, "Expected input dimensions >= 1, got %s" \
|
|
% input_dims
|
|
self.output_dims = output_dims
|
|
assert self.output_dims >= 1, "Expected output dimensions >= 1, got %s" \
|
|
% self.output_dims
|
|
|
|
self.output_schema = schema.Scalar(
|
|
(np.float32, (self.output_dims, )),
|
|
self.get_next_blob_reference('output')
|
|
)
|
|
|
|
assert sigma > 0.0, "Expected bandwidth > 0, got %s" % sigma
|
|
|
|
# Initialize train_init_net parameters
|
|
w_init = w_init if w_init else (
|
|
'GaussianFill', {'mean': 0.0, 'std': 1.0 / sigma}
|
|
)
|
|
|
|
b_init = b_init if b_init else (
|
|
'UniformFill', {'min': 0.0, 'max': 2 * np.pi}
|
|
)
|
|
|
|
self.w = self.create_param(param_name='w',
|
|
shape=[self.output_dims, input_dims],
|
|
initializer=w_init,
|
|
optimizer=model.NoOptim)
|
|
|
|
self.b = self.create_param(param_name='b',
|
|
shape=[self.output_dims],
|
|
initializer=b_init,
|
|
optimizer=model.NoOptim)
|
|
|
|
def add_ops(self, net):
|
|
# Random features: wx + b
|
|
cosine_arg = net.FC(self.input_record.field_blobs() + [self.w, self.b],
|
|
net.NextScopedBlob("cosine_arg"))
|
|
|
|
# Apply cosine to new vectors
|
|
new_feature_vec = net.Cos([cosine_arg],
|
|
net.NextScopedBlob('new_feature_vec'))
|
|
|
|
# Multiply each element in vector by sqrt(2/D)
|
|
scale = np.sqrt(2.0 / self.output_dims)
|
|
net.Scale([new_feature_vec],
|
|
self.output_schema.field_blobs(),
|
|
scale=scale)
|