mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14407 Reviewed By: yinghai Differential Revision: D13364364 Pulled By: wesolwsk fbshipit-source-id: e69bcd1bc52e35b2f0e45e5dc40184f1bd66605d
265 lines
8.0 KiB
Python
265 lines
8.0 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
from functools import reduce
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given, settings
|
|
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class FcTest(hu.HypothesisTestCase):
|
|
@given(n=st.integers(1, 5), m=st.integers(1, 5),
|
|
k=st.integers(1, 5), **mu.gcs)
|
|
def test_fc_2_dims(self, n, m, k, gc, dc):
|
|
X = np.random.rand(m, k).astype(np.float32) - 0.5
|
|
W = np.random.rand(n, k).astype(np.float32) - 0.5
|
|
b = np.random.rand(n).astype(np.float32) - 0.5
|
|
|
|
op = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"]
|
|
)
|
|
|
|
self.assertDeviceChecks(dc, op, [X, W, b], [0])
|
|
|
|
for i in range(3):
|
|
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
|
|
|
|
@given(n=st.integers(1, 5),
|
|
m=st.integers(1, 5),
|
|
c=st.integers(1, 5),
|
|
h=st.integers(1, 5),
|
|
w=st.integers(1, 5),
|
|
axis=st.integers(1, 3),
|
|
**mu.gcs)
|
|
def test_fc_with_axis(self, n, m, c, h, w, axis, gc, dc):
|
|
X = np.random.rand(n, c, h, w).astype(np.float32) - 0.5
|
|
k = reduce((lambda x, y: x * y), [n, c, h, w][axis - 4:])
|
|
nn = reduce((lambda x, y: x * y), [n, c, h, w][:axis])
|
|
W = np.random.rand(m, k).astype(np.float32) - 0.5
|
|
b = np.random.rand(m).astype(np.float32) - 0.5
|
|
dY = np.random.rand(nn, m).astype(np.float32) - 0.5
|
|
|
|
op0 = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"],
|
|
axis=axis,
|
|
device_option=dc[0]
|
|
)
|
|
|
|
op0_bw = core.CreateOperator(
|
|
'FCGradient',
|
|
['X', 'W', 'dY'],
|
|
["dW", "db"],
|
|
axis=axis,
|
|
device_option=dc[0]
|
|
)
|
|
|
|
workspace.ResetWorkspace()
|
|
workspace.FeedBlob('X', X, dc[0])
|
|
workspace.FeedBlob('W', W, dc[0])
|
|
workspace.FeedBlob('b', b, dc[0])
|
|
workspace.RunOperatorOnce(op0)
|
|
Y0 = workspace.FetchBlob('Y')
|
|
|
|
workspace.FeedBlob('dY', dY, dc[0])
|
|
workspace.RunOperatorOnce(op0_bw)
|
|
dW0 = workspace.FetchBlob('dW')
|
|
db0 = workspace.FetchBlob('db')
|
|
|
|
op1 = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"],
|
|
axis=axis,
|
|
device_option=dc[1]
|
|
)
|
|
|
|
op1_bw = core.CreateOperator(
|
|
'FCGradient',
|
|
['X', 'W', 'dY'],
|
|
["dW", "db"],
|
|
axis=axis,
|
|
device_option=dc[1]
|
|
)
|
|
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
workspace.FeedBlob('X', X, dc[1])
|
|
workspace.FeedBlob('W', W, dc[1])
|
|
workspace.FeedBlob('b', b, dc[1])
|
|
workspace.RunOperatorOnce(op1)
|
|
Y1 = workspace.FetchBlob('Y')
|
|
|
|
workspace.FeedBlob('dY', dY, dc[1])
|
|
workspace.RunOperatorOnce(op1_bw)
|
|
dW1 = workspace.FetchBlob('dW')
|
|
db1 = workspace.FetchBlob('db')
|
|
|
|
Y0 = Y0.flatten()
|
|
Y1 = Y1.flatten()
|
|
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
|
|
print(Y1)
|
|
print(Y0)
|
|
print(np.max(np.abs(Y1 - Y0)))
|
|
self.assertTrue(False)
|
|
|
|
dW0 = dW0.flatten()
|
|
dW1 = dW1.flatten()
|
|
if not np.allclose(dW0, dW1, atol=0.01, rtol=0.01):
|
|
print(dW1)
|
|
print(dW0)
|
|
print(np.max(np.abs(dW1 - dW0)))
|
|
self.assertTrue(False)
|
|
|
|
db0 = db0.flatten()
|
|
db1 = db1.flatten()
|
|
if not np.allclose(db0, db1, atol=0.01, rtol=0.01):
|
|
print(db1)
|
|
print(db0)
|
|
print(np.max(np.abs(db1 - db0)))
|
|
self.assertTrue(False)
|
|
|
|
@given(n=st.integers(1, 5),
|
|
o=st.integers(1, 5),
|
|
i=st.integers(1, 5),
|
|
h=st.integers(1, 5),
|
|
w=st.integers(1, 5),
|
|
axis_w=st.integers(1, 3),
|
|
**mu.gcs)
|
|
def test_fc_with_axis_w(self, n, o, i, h, w, axis_w, gc, dc):
|
|
W = np.random.rand(o, i, h, w).astype(np.float32) - 0.5
|
|
k = reduce((lambda x, y: x * y), [o, i, h, w][axis_w - 4:])
|
|
m = reduce((lambda x, y: x * y), [o, i, h, w][:axis_w])
|
|
X = np.random.rand(n, k).astype(np.float32) - 0.5
|
|
b = np.random.rand(m).astype(np.float32) - 0.5
|
|
dY = np.random.rand(n, m).astype(np.float32) - 0.5
|
|
|
|
op0 = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"],
|
|
axis_w=axis_w,
|
|
device_option=dc[0]
|
|
)
|
|
|
|
op0_bw = core.CreateOperator(
|
|
'FCGradient',
|
|
['X', 'W', 'dY'],
|
|
["dW", "db"],
|
|
axis_w=axis_w,
|
|
device_option=dc[0]
|
|
)
|
|
|
|
workspace.ResetWorkspace()
|
|
workspace.FeedBlob('X', X, dc[0])
|
|
workspace.FeedBlob('W', W, dc[0])
|
|
workspace.FeedBlob('b', b, dc[0])
|
|
workspace.RunOperatorOnce(op0)
|
|
Y0 = workspace.FetchBlob('Y')
|
|
|
|
workspace.FeedBlob('dY', dY, dc[0])
|
|
workspace.RunOperatorOnce(op0_bw)
|
|
dW0 = workspace.FetchBlob('dW')
|
|
db0 = workspace.FetchBlob('db')
|
|
|
|
op1 = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"],
|
|
axis_w=axis_w,
|
|
device_option=dc[1]
|
|
)
|
|
|
|
op1_bw = core.CreateOperator(
|
|
'FCGradient',
|
|
['X', 'W', 'dY'],
|
|
["dW", "db"],
|
|
axis_w=axis_w,
|
|
device_option=dc[1]
|
|
)
|
|
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
workspace.FeedBlob('X', X, dc[1])
|
|
workspace.FeedBlob('W', W, dc[1])
|
|
workspace.FeedBlob('b', b, dc[1])
|
|
workspace.RunOperatorOnce(op1)
|
|
Y1 = workspace.FetchBlob('Y')
|
|
|
|
workspace.FeedBlob('dY', dY, dc[1])
|
|
workspace.RunOperatorOnce(op1_bw)
|
|
dW1 = workspace.FetchBlob('dW')
|
|
db1 = workspace.FetchBlob('db')
|
|
|
|
Y0 = Y0.flatten()
|
|
Y1 = Y1.flatten()
|
|
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
|
|
print(Y1)
|
|
print(Y0)
|
|
print(np.max(np.abs(Y1 - Y0)))
|
|
self.assertTrue(False)
|
|
|
|
dW0 = dW0.flatten()
|
|
dW1 = dW1.flatten()
|
|
if not np.allclose(dW0, dW1, atol=0.01, rtol=0.01):
|
|
print(dW1)
|
|
print(dW0)
|
|
print(np.max(np.abs(dW1 - dW0)))
|
|
self.assertTrue(False)
|
|
|
|
db0 = db0.flatten()
|
|
db1 = db1.flatten()
|
|
if not np.allclose(db0, db1, atol=0.01, rtol=0.01):
|
|
print(db1)
|
|
print(db0)
|
|
print(np.max(np.abs(db1 - db0)))
|
|
self.assertTrue(False)
|
|
|
|
@given(n=st.integers(1, 5), m=st.integers(1, 5),
|
|
k=st.integers(1, 5), **mu.gcs)
|
|
def test_fc_4_dims_src(self, n, m, k, gc, dc):
|
|
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
|
|
W = np.random.rand(n, k * m * m).astype(np.float32) - 0.5
|
|
b = np.random.rand(n).astype(np.float32) - 0.5
|
|
|
|
op = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"]
|
|
)
|
|
|
|
self.assertDeviceChecks(dc, op, [X, W, b], [0])
|
|
|
|
for i in range(3):
|
|
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
|
|
|
|
@given(n=st.integers(1, 5), m=st.integers(1, 5),
|
|
k=st.integers(1, 5), **mu.gcs)
|
|
def test_fc_4_dims(self, n, m, k, gc, dc):
|
|
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
|
|
W = np.random.rand(n, k, m, m).astype(np.float32) - 0.5
|
|
b = np.random.rand(n).astype(np.float32) - 0.5
|
|
|
|
op = core.CreateOperator(
|
|
'FC',
|
|
['X', 'W', 'b'],
|
|
["Y"]
|
|
)
|
|
|
|
self.assertDeviceChecks(dc, op, [X, W, b], [0])
|
|
|
|
for i in range(3):
|
|
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|