pytorch/caffe2/python/ideep/fc_op_test.py
PenghuiCheng 939877bf4b Implementation of WeightedSum op for mkl-dnn and fix FC op output shape issue.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14407

Reviewed By: yinghai

Differential Revision: D13364364

Pulled By: wesolwsk

fbshipit-source-id: e69bcd1bc52e35b2f0e45e5dc40184f1bd66605d
2018-12-07 12:35:19 -08:00

265 lines
8.0 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
from functools import reduce
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class FcTest(hu.HypothesisTestCase):
@given(n=st.integers(1, 5), m=st.integers(1, 5),
k=st.integers(1, 5), **mu.gcs)
def test_fc_2_dims(self, n, m, k, gc, dc):
X = np.random.rand(m, k).astype(np.float32) - 0.5
W = np.random.rand(n, k).astype(np.float32) - 0.5
b = np.random.rand(n).astype(np.float32) - 0.5
op = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"]
)
self.assertDeviceChecks(dc, op, [X, W, b], [0])
for i in range(3):
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
@given(n=st.integers(1, 5),
m=st.integers(1, 5),
c=st.integers(1, 5),
h=st.integers(1, 5),
w=st.integers(1, 5),
axis=st.integers(1, 3),
**mu.gcs)
def test_fc_with_axis(self, n, m, c, h, w, axis, gc, dc):
X = np.random.rand(n, c, h, w).astype(np.float32) - 0.5
k = reduce((lambda x, y: x * y), [n, c, h, w][axis - 4:])
nn = reduce((lambda x, y: x * y), [n, c, h, w][:axis])
W = np.random.rand(m, k).astype(np.float32) - 0.5
b = np.random.rand(m).astype(np.float32) - 0.5
dY = np.random.rand(nn, m).astype(np.float32) - 0.5
op0 = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"],
axis=axis,
device_option=dc[0]
)
op0_bw = core.CreateOperator(
'FCGradient',
['X', 'W', 'dY'],
["dW", "db"],
axis=axis,
device_option=dc[0]
)
workspace.ResetWorkspace()
workspace.FeedBlob('X', X, dc[0])
workspace.FeedBlob('W', W, dc[0])
workspace.FeedBlob('b', b, dc[0])
workspace.RunOperatorOnce(op0)
Y0 = workspace.FetchBlob('Y')
workspace.FeedBlob('dY', dY, dc[0])
workspace.RunOperatorOnce(op0_bw)
dW0 = workspace.FetchBlob('dW')
db0 = workspace.FetchBlob('db')
op1 = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"],
axis=axis,
device_option=dc[1]
)
op1_bw = core.CreateOperator(
'FCGradient',
['X', 'W', 'dY'],
["dW", "db"],
axis=axis,
device_option=dc[1]
)
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X', X, dc[1])
workspace.FeedBlob('W', W, dc[1])
workspace.FeedBlob('b', b, dc[1])
workspace.RunOperatorOnce(op1)
Y1 = workspace.FetchBlob('Y')
workspace.FeedBlob('dY', dY, dc[1])
workspace.RunOperatorOnce(op1_bw)
dW1 = workspace.FetchBlob('dW')
db1 = workspace.FetchBlob('db')
Y0 = Y0.flatten()
Y1 = Y1.flatten()
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
print(Y1)
print(Y0)
print(np.max(np.abs(Y1 - Y0)))
self.assertTrue(False)
dW0 = dW0.flatten()
dW1 = dW1.flatten()
if not np.allclose(dW0, dW1, atol=0.01, rtol=0.01):
print(dW1)
print(dW0)
print(np.max(np.abs(dW1 - dW0)))
self.assertTrue(False)
db0 = db0.flatten()
db1 = db1.flatten()
if not np.allclose(db0, db1, atol=0.01, rtol=0.01):
print(db1)
print(db0)
print(np.max(np.abs(db1 - db0)))
self.assertTrue(False)
@given(n=st.integers(1, 5),
o=st.integers(1, 5),
i=st.integers(1, 5),
h=st.integers(1, 5),
w=st.integers(1, 5),
axis_w=st.integers(1, 3),
**mu.gcs)
def test_fc_with_axis_w(self, n, o, i, h, w, axis_w, gc, dc):
W = np.random.rand(o, i, h, w).astype(np.float32) - 0.5
k = reduce((lambda x, y: x * y), [o, i, h, w][axis_w - 4:])
m = reduce((lambda x, y: x * y), [o, i, h, w][:axis_w])
X = np.random.rand(n, k).astype(np.float32) - 0.5
b = np.random.rand(m).astype(np.float32) - 0.5
dY = np.random.rand(n, m).astype(np.float32) - 0.5
op0 = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"],
axis_w=axis_w,
device_option=dc[0]
)
op0_bw = core.CreateOperator(
'FCGradient',
['X', 'W', 'dY'],
["dW", "db"],
axis_w=axis_w,
device_option=dc[0]
)
workspace.ResetWorkspace()
workspace.FeedBlob('X', X, dc[0])
workspace.FeedBlob('W', W, dc[0])
workspace.FeedBlob('b', b, dc[0])
workspace.RunOperatorOnce(op0)
Y0 = workspace.FetchBlob('Y')
workspace.FeedBlob('dY', dY, dc[0])
workspace.RunOperatorOnce(op0_bw)
dW0 = workspace.FetchBlob('dW')
db0 = workspace.FetchBlob('db')
op1 = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"],
axis_w=axis_w,
device_option=dc[1]
)
op1_bw = core.CreateOperator(
'FCGradient',
['X', 'W', 'dY'],
["dW", "db"],
axis_w=axis_w,
device_option=dc[1]
)
workspace.SwitchWorkspace("_device_check_", True)
workspace.FeedBlob('X', X, dc[1])
workspace.FeedBlob('W', W, dc[1])
workspace.FeedBlob('b', b, dc[1])
workspace.RunOperatorOnce(op1)
Y1 = workspace.FetchBlob('Y')
workspace.FeedBlob('dY', dY, dc[1])
workspace.RunOperatorOnce(op1_bw)
dW1 = workspace.FetchBlob('dW')
db1 = workspace.FetchBlob('db')
Y0 = Y0.flatten()
Y1 = Y1.flatten()
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
print(Y1)
print(Y0)
print(np.max(np.abs(Y1 - Y0)))
self.assertTrue(False)
dW0 = dW0.flatten()
dW1 = dW1.flatten()
if not np.allclose(dW0, dW1, atol=0.01, rtol=0.01):
print(dW1)
print(dW0)
print(np.max(np.abs(dW1 - dW0)))
self.assertTrue(False)
db0 = db0.flatten()
db1 = db1.flatten()
if not np.allclose(db0, db1, atol=0.01, rtol=0.01):
print(db1)
print(db0)
print(np.max(np.abs(db1 - db0)))
self.assertTrue(False)
@given(n=st.integers(1, 5), m=st.integers(1, 5),
k=st.integers(1, 5), **mu.gcs)
def test_fc_4_dims_src(self, n, m, k, gc, dc):
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
W = np.random.rand(n, k * m * m).astype(np.float32) - 0.5
b = np.random.rand(n).astype(np.float32) - 0.5
op = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"]
)
self.assertDeviceChecks(dc, op, [X, W, b], [0])
for i in range(3):
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
@given(n=st.integers(1, 5), m=st.integers(1, 5),
k=st.integers(1, 5), **mu.gcs)
def test_fc_4_dims(self, n, m, k, gc, dc):
X = np.random.rand(m, k, m, m).astype(np.float32) - 0.5
W = np.random.rand(n, k, m, m).astype(np.float32) - 0.5
b = np.random.rand(n).astype(np.float32) - 0.5
op = core.CreateOperator(
'FC',
['X', 'W', 'b'],
["Y"]
)
self.assertDeviceChecks(dc, op, [X, W, b], [0])
for i in range(3):
self.assertGradientChecks(gc, op, [X, W, b], i, [0])
if __name__ == "__main__":
unittest.main()