mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: support 0 size in any of the tensor dimensions in mkldnn Pull Request resolved: https://github.com/pytorch/pytorch/pull/15295 Differential Revision: D13573747 Pulled By: yinghai fbshipit-source-id: 5bf7a0b9e2567e80f44981a7823be5407fc94e53
100 lines
3.1 KiB
Python
100 lines
3.1 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from random import randint
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, workspace
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class CopyTest(unittest.TestCase):
|
|
def _get_deep_device(self):
|
|
return caffe2_pb2.DeviceOption(device_type=caffe2_pb2.IDEEP)
|
|
|
|
def test_copy_to_ideep(self):
|
|
op = core.CreateOperator(
|
|
"CopyCPUToIDEEP",
|
|
["X"],
|
|
["X_ideep"],
|
|
)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = randint(1, 128)
|
|
c = randint(1, 64)
|
|
h = randint(1, 128)
|
|
w = randint(1, 128)
|
|
X = np.random.rand(n, c, h, w).astype(np.float32)
|
|
workspace.FeedBlob("X", X)
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X_ideep")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
def test_copy_to_ideep_zero_dim(self):
|
|
op = core.CreateOperator(
|
|
"CopyCPUToIDEEP",
|
|
["X"],
|
|
["X_ideep"],
|
|
)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = 0
|
|
c = randint(1, 128)
|
|
X = np.random.rand(n, c).astype(np.float32)
|
|
workspace.FeedBlob("X", X)
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X_ideep")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
def test_copy_from_ideep(self):
|
|
op = core.CreateOperator(
|
|
"CopyIDEEPToCPU",
|
|
["X_ideep"],
|
|
["X"],
|
|
)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = randint(1, 128)
|
|
c = randint(1, 64)
|
|
h = randint(1, 128)
|
|
w = randint(1, 128)
|
|
X = np.random.rand(n, c, h, w).astype(np.float32)
|
|
workspace.FeedBlob("X_ideep", X, self._get_deep_device())
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
def test_copy_from_ideep_zero_dim(self):
|
|
op = core.CreateOperator(
|
|
"CopyIDEEPToCPU",
|
|
["X_ideep"],
|
|
["X"],
|
|
)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = 0
|
|
c = randint(1, 64)
|
|
X = np.random.rand(n, c).astype(np.float32)
|
|
workspace.FeedBlob("X_ideep", X, self._get_deep_device())
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
def test_copy_from_ideep_fallthrough(self):
|
|
op = core.CreateOperator(
|
|
"CopyIDEEPToCPU",
|
|
["X_ideep"],
|
|
["X"],)
|
|
op.device_option.CopyFrom(self._get_deep_device())
|
|
n = randint(1, 128)
|
|
c = randint(1, 64)
|
|
h = randint(1, 128)
|
|
w = randint(1, 128)
|
|
X = np.random.rand(n, c, h, w).astype(np.float32)
|
|
workspace.FeedBlob("X_ideep", X)
|
|
workspace.RunOperatorOnce(op)
|
|
X_ideep = workspace.FetchBlob("X")
|
|
np.testing.assert_allclose(X, X_ideep)
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|