mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Add winograd conv method. Users can select the direct conv or winograd conv in the model file. We close the origin pr https://github.com/pytorch/pytorch/pull/12154 and create this new one for better rebasing. Pull Request resolved: https://github.com/pytorch/pytorch/pull/15196 Differential Revision: D13463721 Pulled By: yinghai fbshipit-source-id: c5cd5c8aa7622ae7e52aeabd3dbb8ffb99b9b4ee
162 lines
5.6 KiB
Python
162 lines
5.6 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given, settings
|
|
import numpy as np
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, workspace
|
|
from caffe2.python.transformations import optimizeForIDEEP
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class ConvTest(hu.HypothesisTestCase):
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(3, 5),
|
|
size=st.integers(8, 10),
|
|
input_channels=st.integers(1, 3),
|
|
output_channels=st.integers(1, 5),
|
|
batch_size=st.integers(1, 3),
|
|
use_bias=st.booleans(),
|
|
training_mode=st.booleans(),
|
|
group=st.integers(1, 2),
|
|
**mu.gcs)
|
|
def test_convolution(self, stride, pad, kernel, size,
|
|
input_channels, output_channels,
|
|
batch_size, use_bias, training_mode, group, gc, dc):
|
|
training = 1 if training_mode else 0
|
|
op = core.CreateOperator(
|
|
"Conv",
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
stride=stride,
|
|
pad=pad,
|
|
kernel=kernel,
|
|
group=group,
|
|
training_mode=training,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
output_channels * group, input_channels, kernel, kernel) \
|
|
.astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
|
|
|
|
inputs = [X, w, b] if use_bias else [X, w]
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
|
|
if training_mode:
|
|
for i in range(len(inputs)):
|
|
self.assertGradientChecks(gc, op, inputs, i, [0], threshold=0.01)
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
size=st.integers(8, 10),
|
|
input_channels=st.integers(16, 32),
|
|
output_channels=st.integers(16, 32),
|
|
batch_size=st.integers(1, 3),
|
|
use_bias=st.booleans(),
|
|
training_mode=st.booleans(),
|
|
**mu.gcs)
|
|
def test_winograd_convolution(self, stride, pad, size,
|
|
input_channels, output_channels,
|
|
batch_size, use_bias, training_mode, gc, dc):
|
|
training = 1 if training_mode else 0
|
|
conv3x3_winograd_algorithm = 1
|
|
kernel = 3
|
|
op = core.CreateOperator(
|
|
"Conv",
|
|
["X", "w", "b"] if use_bias else ["X", "w"],
|
|
["Y"],
|
|
stride=stride,
|
|
pad=pad,
|
|
kernel=kernel,
|
|
training_mode=training,
|
|
algorithm=conv3x3_winograd_algorithm
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, input_channels, size, size).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
output_channels, input_channels, kernel, kernel) \
|
|
.astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels).astype(np.float32) - 0.5
|
|
|
|
inputs = [X, w, b] if use_bias else [X, w]
|
|
self.assertDeviceChecks(dc, op, inputs, [0])
|
|
|
|
if training_mode:
|
|
for i in range(len(inputs)):
|
|
self.assertGradientChecks(gc, op, inputs, i, [0], threshold=0.01)
|
|
|
|
@given(batch_size=st.integers(1, 3), **mu.gcs)
|
|
def test_depthwise_convolution(self, batch_size, gc, dc):
|
|
op = core.CreateOperator(
|
|
"Conv",
|
|
["X", "w", "b"],
|
|
["Y"],
|
|
stride=1,
|
|
pad=0,
|
|
kernel=1,
|
|
group=4,
|
|
device_option=dc[0]
|
|
)
|
|
op1 = core.CreateOperator(
|
|
"Conv",
|
|
["X", "w", "b"],
|
|
["Y"],
|
|
stride=1,
|
|
pad=0,
|
|
kernel=1,
|
|
group=4,
|
|
device_option=dc[1]
|
|
)
|
|
X = np.random.rand(batch_size, 544, 14, 14).astype(np.float32)
|
|
w = np.random.rand(544, 136, 1, 1).astype(np.float32)
|
|
b = np.random.rand(544).astype(np.float32)
|
|
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
workspace.FeedBlob('X', X, dc[0])
|
|
workspace.FeedBlob('w', w, dc[0])
|
|
workspace.FeedBlob('b', b, dc[0])
|
|
workspace.RunOperatorOnce(op)
|
|
Y0 = workspace.FetchBlob('Y')
|
|
|
|
workspace.ResetWorkspace()
|
|
workspace.FeedBlob('X', X, dc[1])
|
|
workspace.FeedBlob('w', w, dc[1])
|
|
workspace.FeedBlob('b', b, dc[1])
|
|
net = core.Net("net")
|
|
old_net = caffe2_pb2.NetDef()
|
|
old_net.op.extend([op1])
|
|
net.Proto().CopyFrom(old_net)
|
|
optimizeForIDEEP(net)
|
|
workspace.RunOperatorOnce(net.Proto().op[0])
|
|
Y1 = workspace.FetchBlob('Y')
|
|
|
|
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
|
|
print(Y1.flatten())
|
|
print(Y0.flatten())
|
|
print(np.max(np.abs(Y1 - Y0)))
|
|
self.assertTrue(False)
|
|
|
|
workspace.ResetWorkspace()
|
|
workspace.FeedBlob('X', X, dc[1])
|
|
workspace.FeedBlob('w', w, dc[1])
|
|
workspace.FeedBlob('b', b, dc[1])
|
|
workspace.RunOperatorOnce(op1)
|
|
Y2 = workspace.FetchBlob('Y')
|
|
|
|
if not np.allclose(Y0, Y2, atol=0.01, rtol=0.01):
|
|
print(Y2.flatten())
|
|
print(Y0.flatten())
|
|
print(np.max(np.abs(Y2 - Y0)))
|
|
self.assertTrue(False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|