pytorch/caffe2/python/brew.py
Yinghai Lu ef8f556212
[Caffe2] Changes done inside Facebook (#6378)
* fix unit test for sqrt op

From the error logging:

[idx, grad, grad_estimate] are:
[[ 146.            0.5           0.45776367]
 [ 147.            0.5           0.45776367]

The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )

The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)

This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace

Tested with:

`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`

* CompositeReader & CompositeReaderBuilder

A new type of reader gluing multiple readers together.

* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"

Original commit changeset: 9325a4356dbe

* [dai][WIP] convert params to int8 on ps before sending to trainer

Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.

* [easy] improve unit test for sparse length sum ops

as desc.

#accept2ship

* Update GitHub upstream to 771fcb3455

* move sparse hash unique ops to OOS and add unit tests

- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2

- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test

* group_norm_op for caffe2

This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494

This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).

* Resubmit D7405233: disappeared in D7464958

OOS publish causes the op missing -- however, test was still there

* [c2] add sparse hash engine for cuda unique op

The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.

* [dper][gpu] enable unit testing gpu trainer for sparse nn

to debug the GPU trainer using mock data in unit test.

make it easier to develop GPU trainer for new models.

* Reuse Gloo context for Synchronize() calls

Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).

* [GanH/WGAN][1/n]: add FC param clipping

as titled

* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark

* [GanH]: enable diagnose within model

avoid finding blob names but to directly enable inside the model

* Add `net_transformer_fun` option to DPM

This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.

Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.

* [DT] [33/n] Compile flow task groups

task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.

* Initial commit for sparse_normalize vectorization and benchmark

* [GanH]: LB Calibration for JSD

as titled

* Tracing event in async executor

Adding event tracing through TRACE_EVENT macro in async executor

* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset

D7409751 got lost in D7464958

* Visualizing realtime weights values

we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.

* [GanH][Easy]: Fix Homotopy Weighting

apparantely, there was a bug in homotopy weight (alpha, beta) update

* [c2] move sparse hash unique op out of oss

so that oss do not need to depend on google hash map.

* Get rid of std::round as it's not supported on Android

* Revert changes on setup.py

* Skip shaky test on Dataio

* fix
2018-04-10 21:11:43 -07:00

131 lines
4.3 KiB
Python

## @package model_helper_api
# Module caffe2.python.model_helper_api
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import copy
import inspect
from past.builtins import basestring
from caffe2.python.model_helper import ModelHelper
# flake8: noqa
from caffe2.python.helpers.algebra import *
from caffe2.python.helpers.arg_scope import *
from caffe2.python.helpers.array_helpers import *
from caffe2.python.helpers.control_ops import *
from caffe2.python.helpers.conv import *
from caffe2.python.helpers.db_input import *
from caffe2.python.helpers.dropout import *
from caffe2.python.helpers.elementwise_linear import *
from caffe2.python.helpers.fc import *
from caffe2.python.helpers.nonlinearity import *
from caffe2.python.helpers.normalization import *
from caffe2.python.helpers.pooling import *
from caffe2.python.helpers.tools import *
from caffe2.python.helpers.train import *
class HelperWrapper(object):
_registry = {
'arg_scope': arg_scope,
'fc': fc,
'packed_fc': packed_fc,
'fc_decomp': fc_decomp,
'fc_sparse': fc_sparse,
'fc_prune': fc_prune,
'dropout': dropout,
'max_pool': max_pool,
'average_pool': average_pool,
'max_pool_with_index' : max_pool_with_index,
'lrn': lrn,
'softmax': softmax,
'instance_norm': instance_norm,
'spatial_bn': spatial_bn,
'spatial_gn': spatial_gn,
'relu': relu,
'prelu': prelu,
'tanh': tanh,
'concat': concat,
'depth_concat': depth_concat,
'sum': sum,
'transpose': transpose,
'iter': iter,
'accuracy': accuracy,
'conv': conv,
'conv_nd': conv_nd,
'conv_transpose': conv_transpose,
'group_conv': group_conv,
'group_conv_deprecated': group_conv_deprecated,
'image_input': image_input,
'video_input': video_input,
'add_weight_decay': add_weight_decay,
'elementwise_linear': elementwise_linear,
'layer_norm': layer_norm,
'batch_mat_mul' : batch_mat_mul,
'cond' : cond,
'loop' : loop,
'db_input' : db_input,
}
def __init__(self, wrapped):
self.wrapped = wrapped
def __getattr__(self, helper_name):
if helper_name not in self._registry:
raise AttributeError(
"Helper function {} not "
"registered.".format(helper_name)
)
def scope_wrapper(*args, **kwargs):
new_kwargs = {}
if helper_name != 'arg_scope':
if len(args) > 0 and isinstance(args[0], ModelHelper):
model = args[0]
elif 'model' in kwargs:
model = kwargs['model']
else:
raise RuntimeError(
"The first input of helper function should be model. " \
"Or you can provide it in kwargs as model=<your_model>.")
new_kwargs = copy.deepcopy(model.arg_scope)
func = self._registry[helper_name]
var_names, _, varkw, _= inspect.getargspec(func)
if varkw is None:
# this helper function does not take in random **kwargs
new_kwargs = {
var_name: new_kwargs[var_name]
for var_name in var_names if var_name in new_kwargs
}
cur_scope = get_current_scope()
new_kwargs.update(cur_scope.get(helper_name, {}))
new_kwargs.update(kwargs)
return func(*args, **new_kwargs)
scope_wrapper.__name__ = helper_name
return scope_wrapper
def Register(self, helper):
name = helper.__name__
if name in self._registry:
raise AttributeError(
"Helper {} already exists. Please change your "
"helper name.".format(name)
)
self._registry[name] = helper
def has_helper(self, helper_or_helper_name):
helper_name = (
helper_or_helper_name
if isinstance(helper_or_helper_name, basestring) else
helper_or_helper_name.__name__
)
return helper_name in self._registry
sys.modules[__name__] = HelperWrapper(sys.modules[__name__])