pytorch/test/export/test_draft_export.py
angelayi 53df1c11cd [export] Add custom op guards (#141072)
For custom ops that do not have a meta kernel, draft export automatically creates a meta kernel based on the tracing example inputs. To ensure that these assumptions made during tracing is clear to the user, we add assertions into the traced exported program:

An example graph:
```
ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, a: "f32[s0, s1]", b: "f32[s2, s3]"):
             # File: /data/users/angelayi/pytorch/test/export/test_draft_export.py:172 in forward, code: res1 = torch.ops.mylib.foo4(a, b)
            _assert_tensor_metadata = torch.ops.aten._assert_tensor_metadata(a, dtype = torch.float32, device = device(type='cpu'));  _assert_tensor_metadata = None
            _assert_tensor_metadata_1 = torch.ops.aten._assert_tensor_metadata(b, dtype = torch.float32, device = device(type='cpu'));  _assert_tensor_metadata_1 = None
            foo4: "f32[u2, u3]" = torch.ops.mylib.foo4.default(a, b);  a = b = None
            return (foo4,)
```

Differential Revision: [D66321129](https://our.internmc.facebook.com/intern/diff/D66321129)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141072
Approved by: https://github.com/pianpwk
ghstack dependencies: #141071
2024-11-22 20:55:04 +00:00

407 lines
13 KiB
Python

# Owner(s): ["oncall: export"]
import copy
import unittest
from typing import List, Tuple
import torch
from torch.export import Dim, export
from torch.export._draft_export import draft_export, FailureType
from torch.testing import FileCheck
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.torchbind_impls import (
_empty_tensor_queue,
init_torchbind_implementations,
)
from torch.utils._pytree import tree_leaves
class TestDraftExport(TestCase):
def setUp(self):
init_torchbind_implementations()
@torch._library.register_fake_class("_TorchScriptTesting::_TensorQueue")
class FakeTensorQueue:
def __init__(self, queue):
self.queue = queue
@classmethod
def __obj_unflatten__(cls, flattened_ctx):
return cls(**dict(flattened_ctx))
def push(self, x):
self.queue.append(x)
def pop(self):
return self.queue.pop(0)
def size(self):
return len(self.queue)
def is_empty(self):
return len(self.queue) == 0
def float_size(self):
return float(len(self.queue))
self.torch_bind_ops = [
torch.ops._TorchScriptTesting.queue_pop,
torch.ops._TorchScriptTesting.queue_push,
torch.ops._TorchScriptTesting.queue_size,
]
def tearDown(self):
torch._library.fake_class_registry.deregister_fake_class(
"_TorchScriptTesting::_TensorQueue"
)
def test_missing_meta_kernel_custom_op(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
@torch.library.custom_op("mylib::foo2", mutates_args={})
def foo2_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res = torch.ops.mylib.foo2(a, b)
return res
inp = (torch.ones(3, 3), torch.ones(3, 3))
ep, report = draft_export(M(), inp)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
inp = (torch.randn(3, 3), torch.randn(3, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_missing_meta_kernel_impl(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo",
"(Tensor a, Tensor b) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo", "cpu", lib=lib)
def foo_impl(a, b):
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res = torch.ops.mylib.foo(a, b)
return res
inp = (torch.ones(3, 3), torch.ones(3, 3))
ep, report = draft_export(M(), inp)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISSING_FAKE_KERNEL
)
inp = (torch.randn(3, 3), torch.randn(3, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
@unittest.skipIf(not torch.cuda.is_available(), "Requires cuda")
def test_missing_meta_kernel_guard(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
@torch.library.custom_op("mylib::foo4", mutates_args={})
def foo4_impl(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
return a + b
class M(torch.nn.Module):
def forward(self, a, b):
res1 = torch.ops.mylib.foo4(a, b)
return res1
inp = (
torch.ones(3, 4),
torch.ones(3, 4),
)
ep, report = draft_export(
M(),
inp,
dynamic_shapes={
"a": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC},
"b": {0: Dim.DYNAMIC, 1: Dim.DYNAMIC},
},
)
inp = (torch.randn(2, 3), torch.randn(2, 3))
self.assertEqual(ep.module()(*inp), M()(*inp))
m = ep.module()
with self.assertRaisesRegex(RuntimeError, "Tensor device mismatch!"):
bad_device_inps = (
torch.randn(2, 3, device=torch.device("cuda")),
torch.randn(2, 3, device=torch.device("cuda")),
)
m(*bad_device_inps)
with self.assertRaisesRegex(RuntimeError, "Tensor dtype mismatch!"):
bad_dtype_inps = (
torch.randn(2, 3, dtype=torch.float16),
torch.randn(2, 3, dtype=torch.float16),
)
m(*bad_dtype_inps)
def test_data_dependent_failure(self):
with torch.library._scoped_library("mylib", "FRAGMENT") as lib:
torch.library.define(
"mylib::foo1",
"(Tensor a, Tensor b) -> Tensor",
tags=torch.Tag.pt2_compliant_tag,
lib=lib,
)
@torch.library.impl("mylib::foo1", "cpu", lib=lib)
def foo_impl(a, b):
return a + b
@torch.library.register_fake("mylib::foo1", lib=lib)
def mylib_foo_default_fake(*args, **kwargs):
ctx = torch.library.get_ctx()
fake_shape = [ctx.new_dynamic_size() for _ in range(2)]
return torch.empty(fake_shape, dtype=torch.float32, device="cpu")
class M(torch.nn.Module):
def forward(self, a, b, c):
res = torch.ops.mylib.foo1(a, b)
c_item = c.item()
return res[:c_item]
inp = (torch.ones(3, 3), torch.ones(3, 3), torch.tensor(3))
ep, report = draft_export(M(), inp)
self.assertTrue(len(report.failures) > 0)
self.assertEqual(
report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
)
inp = (torch.randn(3, 3), torch.randn(3, 3), torch.tensor(2))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_dedup_data_dependent_failure(self):
class M(torch.nn.Module):
def forward(self, x, y, z):
res = 0
for v in [x, y]:
if v.item() > 10:
res += v * v
else:
res += v + v
return z * res
inp = (torch.tensor(5), torch.tensor(3), torch.tensor(2))
ep, report = draft_export(M(), inp)
self.assertTrue(len(report.failures) > 0)
self.assertEqual(
report.failures[0].failure_type, FailureType.DATA_DEPENDENT_ERROR
)
inp = (torch.tensor(4), torch.tensor(2), torch.tensor(6))
self.assertEqual(ep.module()(*inp), M()(*inp))
def test_offsets(self):
class M(torch.nn.Module):
def forward(self, x):
a = x.item()
if a == 0:
raise RuntimeError("bad")
return x * a
inp = (torch.tensor(3),)
ep, report = draft_export(M(), inp)
def test_shape_failure(self):
class M(torch.nn.Module):
def forward(self, a):
assert a.shape[0] == 3
return a * a
inp = (torch.ones(3, 3),)
ep, report = draft_export(M(), inp, dynamic_shapes={"a": {0: Dim("a0")}})
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.CONSTRAINT_VIOLATION_ERROR
)
inp = (torch.randn(3, 3),)
self.assertEqual(ep.module()(*inp), M()(*inp))
inp = (torch.randn(4, 3),)
with self.assertRaises(RuntimeError):
ep.module()(*inp)
def test_side_effect1(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("a", torch.tensor(2))
def forward(self, b):
a_item = self.a.item()
if a_item == 2:
res = a_item * b
else:
res = (a_item + 1) * b
self.a.add_(1)
a_item = self.a.item()
if a_item == 3:
res = a_item * res
else:
res = (a_item + 1) * res
return res
inp = (torch.ones(3, 3),)
mod = M()
ep, report = draft_export(mod, inp)
self.assertEqual(mod.a, torch.tensor(2))
FileCheck().check_count("torch.ops.aten.add.default", 0, exactly=True).run(
ep.graph_module.code
)
def test_side_effect_inps(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x.sin_()
return x
inp = (torch.ones(3, 3),)
ep, report = draft_export(M(), inp)
self.assertTrue(report.successful())
self.assertEqual(inp[0], torch.ones(3, 3))
def test_torchbind(self):
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
def forward(self, tq, x):
x_cos = tq.pop() + tq.float_size() + self.linear(x)
if tq.is_empty():
x_sin = self.linear(tq.pop()) - tq.size() + x
else:
x_sin = tq.pop() + tq.size() + x
return x_sin, x_cos, tq
mod = Model()
tq = _empty_tensor_queue()
tq2 = copy.deepcopy(tq)
a = torch.randn(2, 2)
b = torch.randn(2, 2)
tq.push(a)
tq.push(b)
tq3 = copy.deepcopy(tq)
inp = (tq, torch.randn(2, 2))
ep, report = draft_export(mod, inp)
self.assertTrue(report.successful())
self.assertEqual(tq2.size(), 0)
self.assertEqual(tq3.size(), 2)
self.assertEqual(tq.size(), 2)
def test_override_size_and_dtype_mismatched_fake_kernels(self):
class M(torch.nn.Module):
def forward(self, a):
return torch.ops.mylib.foo(a)
@torch.library.custom_op("mylib::foo", mutates_args={})
def foo(a: torch.Tensor) -> List[torch.Tensor]:
x = a * 2
y = a.repeat(2, 2)
z = a.to(torch.bfloat16)
return [x, y, z]
@foo.register_fake
def foo_fake_impl(a):
x = torch.empty_like(a) # good
y = torch.empty_like(a) # size mismatch
z = torch.empty_like(a) # dtype mismatch
return [x, y, z]
mod = M()
inputs = (torch.randn(3, 3),)
with self.assertRaises(RuntimeError):
with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True):
export(mod, inputs)
ep, report = draft_export(mod, inputs)
for ep_out, eager_out in zip(ep.module()(*inputs), mod(*inputs)):
self.assertTrue(torch.allclose(ep_out, eager_out))
self.assertEqual(ep_out.dtype, eager_out.dtype)
self.assertEqual(len(report.failures), 2)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertEqual(
report.failures[1].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertEqual(
sorted([f.data["reason"] for f in report.failures]),
[
"Dtypes torch.bfloat16 and torch.float32 are not equal!",
"mismatch between fake value 3 and real value 6 ",
],
)
def test_override_incorrectly_aliasing_kernel(self):
class M(torch.nn.Module):
def forward(self, a):
return torch.ops.mylib.foo(a)
@torch.library.custom_op("mylib::foo", mutates_args={})
def foo(a: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
return a * 2, a + 2
@foo.register_fake
def foo_fake_impl(a):
return a, torch.empty_like(a) # incorrectly aliasing
mod = M()
inputs = (torch.randn(3, 3),)
with self.assertRaisesRegex(
RuntimeError,
"Real tensor propagation found an aliasing mismatch",
):
with torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True):
export(mod, inputs)
ep, report = draft_export(mod, inputs)
for ep_out, eager_out in zip(
tree_leaves(ep.module()(*inputs)), tree_leaves(mod(*inputs))
):
self.assertTrue(torch.allclose(ep_out, eager_out))
self.assertEqual(ep_out.dtype, eager_out.dtype)
self.assertEqual(len(report.failures), 1)
self.assertEqual(
report.failures[0].failure_type, FailureType.MISMATCHED_FAKE_KERNEL
)
self.assertTrue(
"Mismatched aliasing spec between fake kernel and real kernel"
in report.failures[0].data["reason"]
)
if __name__ == "__main__":
run_tests()