pytorch/torch/csrc/jit/codegen/cuda/manager.h
Jane Xu 533cb9530e Introducing TORCH_CUDA_CPP_API and TORCH_CUDA_CU_API to the code (#50627)
Summary:
Sub-step of my attempt to split up the torch_cuda library, as it is huge. Please look at https://github.com/pytorch/pytorch/issues/49050 for details on the split and which files are in which target.

This PR introduces two new macros for Windows DLL purposes, TORCH_CUDA_CPP_API and TORCH_CUDA_CU_API. Both are defined as TORCH_CUDA_API for the time being.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50627

Reviewed By: mruberry

Differential Revision: D25955441

Pulled By: janeyx99

fbshipit-source-id: ff226026833b8fb2fb7c77df6f2d6c824f006869
2021-01-21 19:09:11 -08:00

41 lines
1.3 KiB
C++

#pragma once
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/jit/ir/ir.h>
/*
* This file handles compilation and execution of a CudaFusionGroup;
*
* A CudaFusionGroup node comes with `attr::Subgraph` containing the computation
* graph. We compile the graph to generate CUDA function and cache them in a
* registry. We cache & reuse kernels across nodes sharing identical graph.
*
* After compilation, we assign the key to cached kernel as an integer attribute
* on the node `attr::cache_id`.
*/
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
// Get fusion_node ready for execution.
// find or compile `CudaKernel` for graph stored in `attr::Subgraph`
// this function assigns `attr::cache_id` to `fusion_node`
TORCH_CUDA_CU_API void compileCudaFusionGroup(Node* fusion_node);
// Execute fusion_node.
// Current protocol is that the function allocates output tensor append them to
// `stack` after execution.
// TODO: support shape inferencing. Right now we only handles static shape
TORCH_CUDA_CU_API void runCudaFusionGroup(
const Node* fusion_node,
Stack& stack);
TORCH_CUDA_CU_API void CudaFuseGraph(std::shared_ptr<Graph>& graph);
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch