mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
74 lines
2.0 KiB
Python
74 lines
2.0 KiB
Python
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from caffe2.python import workspace, core
|
|
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
|
|
class TestPredictor(unittest.TestCase):
|
|
def setUp(self):
|
|
np.random.seed(1)
|
|
self.predict_net = self._predict_net
|
|
self.init_net = self._init_net
|
|
|
|
@property
|
|
def _predict_net(self):
|
|
net = caffe2_pb2.NetDef()
|
|
net.name = 'test-predict-net'
|
|
net.external_input[:] = ['A', 'B']
|
|
net.external_output[:] = ['C']
|
|
net.op.extend([
|
|
core.CreateOperator(
|
|
'MatMul',
|
|
['A', 'B'],
|
|
['C'],
|
|
)
|
|
])
|
|
return net.SerializeToString()
|
|
|
|
@property
|
|
def _init_net(self):
|
|
net = caffe2_pb2.NetDef()
|
|
net.name = 'test-init-net'
|
|
net.external_output[:] = ['A', 'B']
|
|
net.op.extend([
|
|
core.CreateOperator(
|
|
'GivenTensorFill',
|
|
[],
|
|
['A'],
|
|
shape=(2, 3),
|
|
values=np.zeros((2, 3), np.float32).flatten().tolist(),
|
|
),
|
|
core.CreateOperator(
|
|
'GivenTensorFill',
|
|
[],
|
|
['B'],
|
|
shape=(3, 4),
|
|
values=np.zeros((3, 4), np.float32).flatten().tolist(),
|
|
),
|
|
])
|
|
return net.SerializeToString()
|
|
|
|
def test_run(self):
|
|
A = np.ones((2, 3), np.float32)
|
|
B = np.ones((3, 4), np.float32)
|
|
predictor = workspace.Predictor(self.init_net, self.predict_net)
|
|
outputs = predictor.run([A, B])
|
|
self.assertEqual(len(outputs), 1)
|
|
np.testing.assert_almost_equal(np.dot(A, B), outputs[0])
|
|
|
|
def test_run_map(self):
|
|
A = np.zeros((2, 3), np.float32)
|
|
B = np.ones((3, 4), np.float32)
|
|
predictor = workspace.Predictor(self.init_net, self.predict_net)
|
|
outputs = predictor.run({
|
|
'B': B,
|
|
})
|
|
self.assertEqual(len(outputs), 1)
|
|
np.testing.assert_almost_equal(np.dot(A, B), outputs[0])
|