mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38514 this diff introduces the `Histogram` caffe2 op, which computes a histogram tensor for a list of input tensors. the bin edges of the histogram are defined by arg `bin_edges`. Test Plan: tests Reviewed By: chocjy Differential Revision: D21553956 fbshipit-source-id: fc98c8db691d66d2dad57b6ad14867109913cb6f
83 lines
2.3 KiB
C++
83 lines
2.3 KiB
C++
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include "caffe2/core/operator.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
template <class Context>
|
|
class HistogramOp final : public Operator<Context> {
|
|
public:
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
template <class... Args>
|
|
explicit HistogramOp(Args&&... args)
|
|
: Operator<Context>(std::forward<Args>(args)...),
|
|
bin_edges_(this->template GetRepeatedArgument<float>("bin_edges")) {
|
|
CAFFE_ENFORCE_GE(
|
|
bin_edges_.size(),
|
|
2,
|
|
"Number of bin edges must be greater than or equal to 2.");
|
|
for (int i = 1; i < bin_edges_.size(); i++) {
|
|
CAFFE_ENFORCE_GT(
|
|
bin_edges_[i],
|
|
bin_edges_[i - 1],
|
|
"bin_edges must be a strictly increasing sequence of values.");
|
|
}
|
|
}
|
|
|
|
bool RunOnDevice() override {
|
|
return DispatchHelper<TensorTypes<float, double>>::call(this, Input(0));
|
|
}
|
|
|
|
template <typename T>
|
|
bool DoRunWithType() {
|
|
CheckInputs();
|
|
|
|
const auto* histogram = Output(HISTOGRAM);
|
|
histogram->Resize(bin_edges_.size() - 1);
|
|
auto* histogram_data = histogram->template mutable_data<int64_t>();
|
|
math::Set<int64_t, Context>(
|
|
bin_edges_.size() - 1, 0, histogram_data, &context_);
|
|
|
|
for (int input_idx = 0; input_idx < InputSize(); input_idx++) {
|
|
const auto& x = Input(input_idx);
|
|
const int64_t N = x.numel();
|
|
const auto* x_data = x.template data<T>();
|
|
for (int64_t data_idx = 0; data_idx < N; data_idx++) {
|
|
const auto bisection_it = std::upper_bound(
|
|
bin_edges_.begin(), bin_edges_.end(), x_data[data_idx]);
|
|
const int bisection_idx = bisection_it - bin_edges_.begin();
|
|
if (bisection_idx > 0 && bisection_idx < bin_edges_.size()) {
|
|
histogram_data[bisection_idx - 1]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
protected:
|
|
OUTPUT_TAGS(HISTOGRAM);
|
|
|
|
private:
|
|
vector<float> bin_edges_;
|
|
|
|
void CheckInputs() {
|
|
const auto& input_zero = Input(0);
|
|
for (int i = 1; i < InputSize(); i++) {
|
|
CAFFE_ENFORCE_EQ(
|
|
Input(i).dtype(),
|
|
input_zero.dtype(),
|
|
"All inputs must have the same type; expected ",
|
|
input_zero.dtype().name(),
|
|
" but got ",
|
|
Input(i).dtype().name(),
|
|
" for input ",
|
|
i);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace caffe2
|