pytorch/test/cpp/api/module.cpp
Peter Goldsborough 521f5111ad
[C++ API] Use torch::Tensor instead of at::Tensor/Variable mix (#8680)
* Use torch::Tensor instead of at::Tensor/Variable mix

* TensorRange -> TensorListView
2018-06-24 19:03:39 -07:00

232 lines
6.8 KiB
C++

#include <catch.hpp>
#include <torch/nn/module.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/modules/rnn.h>
#include <torch/tensor.h>
using namespace torch::nn;
using Catch::StartsWith;
struct AGIUnit : torch::nn::Module {};
namespace test {
struct AGIUnit : torch::nn::Module {};
struct AGIUnit2 : torch::nn::Module {
AGIUnit2() : torch::nn::Module("Foo") {}
};
} // namespace test
bool pointer_equal(torch::Tensor first, torch::Tensor second) {
return first.data().data<float>() == second.data().data<float>();
}
TEST_CASE("module/training-mode") {
Linear module(3, 4);
REQUIRE(module->is_training());
SECTION("Enable eval mode") {
module->eval();
REQUIRE(!module->is_training());
}
SECTION("Enable train mode") {
module->train();
REQUIRE(module->is_training());
}
}
TEST_CASE("module/zero-grad") {
Linear module(3, 4);
auto weight = torch::ones({8, 3}, at::requires_grad());
auto loss = module->forward({weight}).front().sum();
loss.backward();
for (auto& parameter : module->parameters()) {
auto grad = parameter->grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() != 0);
}
module->zero_grad();
for (auto& parameter : module->parameters()) {
auto grad = parameter->grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() == 0);
}
}
TEST_CASE("module/name") {
// CHECK instead of REQUIRE because demangling may fail.
AGIUnit agi;
// Call it twice just to make sure there are no bugs in the lazy
// initialization semantics.
CHECK(agi.name() == "AGIUnit");
CHECK(agi.name() == "AGIUnit");
SECTION("correctly demangled") {
CHECK(test::AGIUnit().name() == "test::AGIUnit");
CHECK(test::AGIUnit2().name() == "Foo");
}
}
TEST_CASE("module/conversions", "[cuda]") {
auto module = LSTM(LSTMOptions(128, 64).layers(3).dropout(0.2));
SECTION("starts as float on CPU") {
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->type().backend() == at::kCPU);
REQUIRE(parameter->type().scalarType() == torch::kFloat32);
}
}
SECTION("to(CUDA)") {
module->cuda();
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->type().backend() == at::kCUDA);
}
}
SECTION("to(CPU)") {
module->to(at::kCPU);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->type().backend() == at::kCPU);
}
}
SECTION("to(Int)") {
module->to(torch::kInt32);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->type().scalarType() == torch::kInt32);
}
}
SECTION("to(Double)") {
module->to(torch::kFloat64);
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->type().scalarType() == torch::kFloat64);
}
}
SECTION("to(CUDA(Float))") {
module->to(at::CUDA(torch::kFloat32));
for (auto& parameter : module->parameters()) {
REQUIRE(parameter->type().backend() == at::kCUDA);
REQUIRE(parameter->type().scalarType() == torch::kFloat32);
}
}
}
TEST_CASE("module/clone") {
SECTION(
"a module that does not override clone() throws when clone() is called") {
struct UnCloneable : Module {};
UnCloneable module;
REQUIRE_THROWS_WITH(
module.clone(), StartsWith("clone() has not been implemented"));
}
SECTION(
"a module that overrides clone() does not throw when clone() is called ") {
struct Cloneable : Module {
std::shared_ptr<Module> clone() const override {
return nullptr;
}
};
Cloneable module;
REQUIRE_NOTHROW(module.clone());
}
SECTION("Cloning creates distinct parameters") {
struct TestModule : public Cloneable<TestModule> {
void reset() override {
l1 = register_module("l1", Linear(10, 3));
l2 = register_module("l2", Linear(3, 5));
l3 = register_module("l3", Linear(5, 100));
}
Linear l1, l2, l3;
};
auto module = TestModule().build();
auto module2 = module->clone();
auto m1param = module->parameters();
auto m2param = module2->parameters();
for (auto& param : m1param) {
REQUIRE(!pointer_equal(param.value, m2param[param.key]));
REQUIRE(param->allclose(m2param[param.key]));
param->data().mul_(2);
}
for (auto& param : m1param) {
REQUIRE(!param->allclose(m2param[param.key]));
}
}
SECTION("Cloning preserves external references") {
struct TestModule : public Cloneable<TestModule> {
void reset() override {
weight = register_parameter("weight", torch::ones({4, 4}));
}
torch::Tensor weight;
};
auto module = TestModule().build();
module->weight.data() += 1;
REQUIRE(pointer_equal(module->weight, module->parameters()["weight"]));
REQUIRE(module->weight.allclose(module->parameters()["weight"]));
auto module2 = std::dynamic_pointer_cast<TestModule>(
std::shared_ptr<Module>(module->clone()));
REQUIRE(!pointer_equal(module2->weight, module->weight));
REQUIRE(pointer_equal(module2->weight, module2->parameters()["weight"]));
REQUIRE(module2->weight.allclose(module2->parameters()["weight"]));
REQUIRE(module2->weight.allclose(module->weight));
REQUIRE(!pointer_equal(module2->weight, module->parameters()["weight"]));
}
SECTION("Cloning copies the values of variables of submodules") {
struct TestModule : public Cloneable<TestModule> {
void reset() override {
weight = register_parameter("weight", torch::ones({4, 4}));
}
torch::Tensor weight;
int value = 0;
};
struct NestedModule : public Cloneable<NestedModule> {
void reset() override {
module = register_module("module", TestModule().build());
}
std::shared_ptr<TestModule> module;
};
auto a = NestedModule().build();
a->module->weight.data() += 1;
a->module->value = 123;
auto b = std::static_pointer_cast<NestedModule>(a->clone());
REQUIRE(!pointer_equal(b->module->weight, a->module->weight));
REQUIRE(
pointer_equal(b->module->weight, b->module->parameters()["weight"]));
REQUIRE(b->module->parameters()["weight"].allclose(a->module->weight));
REQUIRE(b->module->weight.allclose(a->module->weight));
REQUIRE(b->module->value == a->module->value);
}
}
TEST_CASE("module/parameters") {
struct TestModule : Module {
TestModule() {
a = register_parameter("a", torch::zeros({2, 2}));
b = register_parameter("b", torch::ones({2, 2}));
c = register_parameter("c", torch::ones({2, 2}) * 2);
}
torch::Tensor a, b, c;
};
TestModule module;
SECTION("has correct number of parameters") {
REQUIRE(module.parameters().size() == 3);
}
SECTION("contains parameters with the correct name") {
auto parameters = module.parameters();
REQUIRE(parameters.contains("a"));
REQUIRE(parameters.contains("b"));
REQUIRE(parameters.contains("c"));
}
}