mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
99 lines
2.8 KiB
C++
99 lines
2.8 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/utils/python_tuples.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
|
|
#include <stdexcept>
|
|
|
|
namespace py = pybind11;
|
|
|
|
namespace pybind11 { namespace detail {
|
|
|
|
// torch.autograd.Variable <-> at::Tensor conversions (without unwrapping)
|
|
template <>
|
|
struct type_caster<at::Tensor> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(at::Tensor, _("at::Tensor"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject* obj = src.ptr();
|
|
if (THPVariable_Check(obj)) {
|
|
value = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static handle
|
|
cast(at::Tensor src, return_value_policy /* policy */, handle /* parent */) {
|
|
if (!src.is_variable()) {
|
|
throw std::runtime_error(
|
|
"Expected tensor's dynamic type to be Variable, not Tensor");
|
|
}
|
|
return handle(THPVariable_Wrap(torch::autograd::Variable(src)));
|
|
}
|
|
};
|
|
|
|
template<> struct type_caster<torch::autograd::Variable> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(torch::autograd::Variable, _("torch::autograd::Variable"));
|
|
bool load(handle src, bool) {
|
|
PyObject *source = src.ptr();
|
|
if (THPVariable_Check(source)) {
|
|
value = ((THPVariable*)source)->cdata;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
static handle cast(torch::autograd::Variable src, return_value_policy /* policy */, handle /* parent */) {
|
|
return handle(THPVariable_Wrap(src));
|
|
}
|
|
};
|
|
|
|
template<> struct type_caster<at::IntList> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(at::IntList, _("at::IntList"));
|
|
|
|
bool load(handle src, bool) {
|
|
PyObject *source = src.ptr();
|
|
auto tuple = PyTuple_Check(source);
|
|
if (tuple || PyList_Check(source)) {
|
|
auto size = tuple ? PyTuple_GET_SIZE(source) : PyList_GET_SIZE(source);
|
|
v_value.resize(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(source, idx) : PyList_GET_ITEM(source, idx);
|
|
if (THPVariable_Check(obj)) {
|
|
v_value[idx] = THPVariable_Unpack(obj).item<int64_t>();
|
|
} else if (PyLong_Check(obj)) {
|
|
// use THPUtils_unpackLong after it is safe to include python_numbers.h
|
|
v_value[idx] = THPUtils_unpackLong(obj);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
value = v_value;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
static handle cast(at::IntList src, return_value_policy /* policy */, handle /* parent */) {
|
|
return handle(THPUtils_packInt64Array(src.size(), src.data()));
|
|
}
|
|
private:
|
|
std::vector<int64_t> v_value;
|
|
};
|
|
|
|
// http://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#c-17-library-containers
|
|
template <typename T>
|
|
struct type_caster<c10::optional<T>> : optional_caster<c10::optional<T>> {};
|
|
}} // namespace pybind11::detail
|