pytorch/torch/csrc/jit/graph_executor.h
Edward Yang 517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00

56 lines
1.6 KiB
C++

#pragma once
#include <memory>
#include <torch/csrc/jit/ir.h>
#include <torch/csrc/jit/variable_tensor_list.h>
#include <torch/csrc/jit/interpreter.h>
#include <torch/csrc/jit/autodiff.h>
#include <torch/csrc/jit/argument_spec.h>
namespace torch { namespace jit {
struct GraphExecutorState;
// Notice that those structs don't manage lifetime of their members.
// They is only valid only right after you call getDebugState() and should never
// be used again once another GraphExecutor function is called.
struct ExecutionPlanState {
Code* code = nullptr;
const Graph* graph = nullptr;
};
struct GraphExecutorState {
const Graph* graph = nullptr;
ExecutionPlanState fallback; // XXX: members of this field are optional
std::unordered_map<ArgumentSpec, ExecutionPlanState> execution_plans;
};
struct GraphExecutorImpl;
struct TORCH_API GraphExecutor {
GraphExecutor() = default;
GraphExecutor(std::shared_ptr<Graph> graph, bool optimize = true);
void run(Stack & inputs);
explicit operator bool() const {
return pImpl != nullptr;
}
std::shared_ptr<Graph> graph() const;
std::shared_ptr<Graph> graphFor(const Stack& inputs) const;
GraphExecutorState getDebugState();
void debugDisableAutodiffSubgraphInlining();
private:
std::shared_ptr<GraphExecutorImpl> pImpl;
};
// These passes need to run before it is valid to pass to the interpreter
// regardless of whether sizes have been specialized or not.
TORCH_API void runRequiredPasses(const std::shared_ptr<Graph>& g);
namespace detail {
GraphExecutor* getGradExecutor(Operation& op);
} // namespace detail
}}