pytorch/torch/csrc/jit/fuser/compiler.cpp
Edward Yang 517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00

228 lines
6.9 KiB
C++

#include <torch/csrc/jit/fuser/compiler.h>
#include <ATen/ATen.h>
#include <torch/csrc/jit/ir.h>
#include <torch/csrc/jit/type.h>
#include <torch/csrc/jit/code_template.h>
#include <torch/csrc/jit/assertions.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/fuser/interface.h>
#include <torch/csrc/jit/fuser/kernel_cache.h>
#include <torch/csrc/jit/fuser/codegen.h>
#include <torch/csrc/jit/fuser/tensor_desc.h>
#if USE_CUDA_FUSER
#include <torch/csrc/jit/fuser/cuda/fused_kernel.h>
#endif // USE_CUDA_FUSER
#if USE_CPU_FUSER
#include <torch/csrc/jit/fuser/cpu/fused_kernel.h>
#endif // USE_CUDA_FUSER
#include <iostream>
#include <memory>
#include <unordered_set>
#include <utility>
#include <string>
#include <atomic>
#include <sstream>
#include <stdexcept>
#include <tuple>
namespace torch { namespace jit { namespace fuser {
// Counter for number of kernels compiled, used for debugging and
// creating arbitrary kernel names.
static std::atomic<size_t> next_kernel_id{0};
static int debug_fusion{-1};
size_t nCompiledKernels() { return next_kernel_id.load(); }
int debugFuser() {
if (debug_fusion < 0) {
const char* debug_env = getenv("PYTORCH_FUSION_DEBUG");
debug_fusion = debug_env ? atoi(debug_env) : 0;
}
return debug_fusion;
}
// If the given node is used once by a chunk node, returns that node.
// Returns nullptr otherwise.
static const Node* usedInFusedChunk(const Value* input) {
const auto uses = input->uses();
if (uses.size() == 1) {
const Node *user = uses[0].user;
if (user->kind() == prim::ConstantChunk) {
return user;
}
}
return nullptr;
}
static void setInputChunkDescriptors(KernelSpec& spec) {
spec.inputChunks().reserve((spec.graph())->inputs().size());
for (const Value* input : (spec.graph())->inputs()) {
if (const Node* chunk = usedInFusedChunk(input)) {
spec.inputChunks().emplace_back(chunk->i(attr::chunks), chunk->i(attr::dim));
} else {
spec.inputChunks().emplace_back(1, 0);
}
}
}
// Run a DFS traversal to find all inputs that affect a given output value
static std::vector<int64_t> getInputDependencies(const Value* output) {
std::vector<const Value*> queue{output};
std::unordered_set<const Value*> inputs;
std::unordered_set<const Value*> seen;
while (!queue.empty()) {
const Value* val = queue.back(); queue.pop_back();
const Node* producer = val->node();
if (producer->kind() == prim::Param) {
inputs.insert(val);
continue;
}
for (const Value* input : producer->inputs()) {
if (/*bool inserted = */seen.insert(input).second) {
queue.push_back(input);
}
}
}
// Convert Value* into offsets into the graph's input list
std::vector<int64_t> offsets;
offsets.reserve(inputs.size());
for (const Value* input : inputs) {
offsets.push_back(input->offset());
}
std::sort(offsets.begin(), offsets.end());
return offsets;
}
static void setInputBroadcastGroups(KernelSpec& spec) {
std::unordered_set<std::vector<int64_t>, torch::hash<std::vector<int64_t>>> broadcast_groups;
for (const Value* output : (spec.graph())->outputs()) {
if (output->node()->kind() == prim::FusedConcat) {
for (const Value* concat_input : output->node()->inputs()) {
broadcast_groups.insert(getInputDependencies(concat_input));
}
} else {
broadcast_groups.insert(getInputDependencies(output));
}
}
std::copy(
broadcast_groups.begin()
, broadcast_groups.end()
, std::back_inserter(spec.inputBroadcastGroups()));
}
// Performs "upfront" compilation where storage is known but shapes are not.
// Currently identifies how to expand all tensors so that all intermediate
// tensors are the same shape, simplifying code generation.
// Broadcast groups and chunks are identified without shape information
// using logical properties of how each works. In particular, tensors
// are always expandable to the outputs of pointwise operations they
// or their descendants are involved in, which means that in a DAG of
// pointwise operations all tensors are expandable to the (single) output.
// Note: The logic is slightly complicated by concatenation and chunking.
static void upfrontCompilation(KernelSpec& spec) {
setInputBroadcastGroups(spec);
setInputChunkDescriptors(spec);
}
int64_t registerFusion(const Node* fusion_group) {
// Creates and stores the FusionSpec
auto graph = fusion_group->g(attr::Subgraph)->copy();
EraseShapeInformation(graph);
const auto key = store(graph);
if (canFuseOnCPU() || canFuseOnGPU()) {
const auto maybe_spec = retrieve(key);
JIT_ASSERT(maybe_spec);
upfrontCompilation(**maybe_spec);
}
return key;
}
std::shared_ptr<FusedKernel> compileKernel(
const KernelSpec& spec
, const ArgSpec& arg_spec
, const std::vector<int64_t>& map_size
, const at::Device device) {
const std::vector<TensorDesc>& input_desc = arg_spec.descs();
auto graph = spec.graph()->copy();
c10::optional<at::ScalarType> scalar_type;
for (size_t i = 0; i < input_desc.size(); i++) {
const auto& desc = input_desc[i];
graph->inputs()[i]->setType(TensorType::create(desc.scalar_type, device, desc.nDim())); // TODO: nDim is bad, as it is collapsed
}
PropagateInputShapes(graph);
// Creates output descriptions
std::vector<TensorDesc> output_desc;
for (const Value* output : graph->outputs()) {
std::vector<int64_t> sizes = map_size;
if (output->node()->kind() == prim::FusedConcat) {
sizes.at(output->node()->i(attr::dim)) *= output->node()->inputs().size();
}
auto scalar_type = output->type()->expect<c10::TensorType const>()->scalarType();
auto type = CompleteTensorType::create(scalar_type, device, sizes);
output_desc.emplace_back(std::move(type));
}
const std::string name = "kernel_" + std::to_string(next_kernel_id++);
const bool use_cuda = device.is_cuda();
std::string code;
std::vector<PartitionDesc> chunk_desc;
std::vector<PartitionDesc> concat_desc;
bool has_random;
std::tie(code, chunk_desc, concat_desc, has_random)
= generateKernel(
name
, *graph
, input_desc
, output_desc
, use_cuda);
std::shared_ptr<FusedKernel> fused_kernel;
if (use_cuda) {
#if USE_CUDA_FUSER
fused_kernel = std::make_shared<cuda::FusedKernelCUDA>(
device.index()
, name
, code
, input_desc
, output_desc
, chunk_desc
, concat_desc
, has_random);
#else
throw std::runtime_error("CUDA Fusion is not supported on this build.");
#endif // USE_CUDA_FUSER
} else {
#if USE_CPU_FUSER
fused_kernel = std::make_shared<cpu::FusedKernelCPU>(
name
, code
, input_desc
, output_desc
, chunk_desc
, concat_desc
, has_random);
#else
throw std::runtime_error("CPU Fusion is not supported on this build.");
#endif // USE_CPU_FUSER
}
return fused_kernel;
}
} // namespace fuser
} // namespace jit
} // namespace torch