pytorch/torch/csrc/generic/serialization.cpp
Edward Yang 517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00

114 lines
4.0 KiB
C++

#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "torch/csrc/generic/serialization.cpp"
#else
template <class io>
void THPStorage_(writeFileRaw)(THWStorage *self, io fd)
{
scalar_t *data;
int64_t size = THWStorage_(size)(LIBRARY_STATE self);
#ifndef THC_GENERIC_FILE
data = THWStorage_(data)(LIBRARY_STATE self);
#else
std::unique_ptr<char[]> cpu_data(new char[size * sizeof(scalar_t)]);
data = (scalar_t*)cpu_data.get();
THCudaCheck(cudaMemcpy(data, THWStorage_(data)(LIBRARY_STATE self), size * sizeof(scalar_t), cudaMemcpyDeviceToHost));
#endif
doWrite(fd, &size, sizeof(int64_t));
// fast track for bytes and little endian
if (sizeof(scalar_t) == 1 || THP_nativeByteOrder() == THPByteOrder::THP_LITTLE_ENDIAN) {
doWrite(fd, data, sizeof(scalar_t) * size);
} else {
int64_t buffer_size = std::min(size, (int64_t)5000);
std::unique_ptr<uint8_t[]> le_buffer(new uint8_t[buffer_size * sizeof(scalar_t)]);
for (int64_t i = 0; i < size; i += buffer_size) {
size_t to_convert = std::min(size - i, buffer_size);
if (sizeof(scalar_t) == 2) {
THP_encodeInt16Buffer((uint8_t*)le_buffer.get(),
(const int16_t*)data + i,
THPByteOrder::THP_LITTLE_ENDIAN,
to_convert);
} else if (sizeof(scalar_t) == 4) {
THP_encodeInt32Buffer((uint8_t*)le_buffer.get(),
(const int32_t*)data + i,
THPByteOrder::THP_LITTLE_ENDIAN,
to_convert);
} else if (sizeof(scalar_t) == 8) {
THP_encodeInt64Buffer((uint8_t*)le_buffer.get(),
(const int64_t*)data + i,
THPByteOrder::THP_LITTLE_ENDIAN,
to_convert);
}
doWrite(fd, le_buffer.get(), to_convert * sizeof(scalar_t));
}
}
}
template void THPStorage_(writeFileRaw<int>)(THWStorage *self, int fd);
template void THPStorage_(writeFileRaw<PyObject*>)(THWStorage *self, PyObject* fd);
template <class io>
THWStorage * THPStorage_(readFileRaw)(io file, THWStorage *_storage)
{
scalar_t *data;
int64_t size;
doRead(file, &size, sizeof(int64_t));
THWStoragePtr storage;
if (_storage == nullptr) {
storage = THWStorage_(newWithSize)(LIBRARY_STATE size);
} else {
THPUtils_assert(THWStorage_(size)(LIBRARY_STATE _storage) == size,
"storage has wrong size: expected %ld got %ld",
size, THWStorage_(size)(LIBRARY_STATE _storage));
storage = _storage;
}
#ifndef THC_GENERIC_FILE
data = THWStorage_(data)(LIBRARY_STATE storage);
#else
std::unique_ptr<char[]> cpu_data(new char[size * sizeof(scalar_t)]);
data = (scalar_t*)cpu_data.get();
#endif
// fast track for bytes and little endian
if (sizeof(scalar_t) == 1 || THP_nativeByteOrder() == THPByteOrder::THP_LITTLE_ENDIAN) {
doRead(file, data, sizeof(scalar_t) * THWStorage_(size)(LIBRARY_STATE storage));
} else {
int64_t buffer_size = std::min(size, (int64_t)5000);
std::unique_ptr<uint8_t[]> le_buffer(new uint8_t[buffer_size * sizeof(scalar_t)]);
for (int64_t i = 0; i < size; i += buffer_size) {
size_t to_convert = std::min(size - i, buffer_size);
doRead(file, le_buffer.get(), sizeof(scalar_t) * to_convert);
if (sizeof(scalar_t) == 2) {
THP_decodeInt16Buffer((int16_t*)data + i,
le_buffer.get(),
THPByteOrder::THP_LITTLE_ENDIAN,
to_convert);
} else if (sizeof(scalar_t) == 4) {
THP_decodeInt32Buffer((int32_t*)data + i,
le_buffer.get(),
THPByteOrder::THP_LITTLE_ENDIAN,
to_convert);
} else if (sizeof(scalar_t) == 8) {
THP_decodeInt64Buffer((int64_t*)data + i,
le_buffer.get(),
THPByteOrder::THP_LITTLE_ENDIAN,
to_convert);
}
}
}
#ifdef THC_GENERIC_FILE
THCudaCheck(cudaMemcpy(THWStorage_(data)(LIBRARY_STATE storage), data, size * sizeof(scalar_t), cudaMemcpyHostToDevice));
#endif
return storage.release();
}
template THWStorage* THPStorage_(readFileRaw<int>)(int fd, THWStorage* storage);
template THWStorage* THPStorage_(readFileRaw<PyObject*>)(PyObject* fd, THWStorage* storage);
#endif