pytorch/torch/csrc/cuda/utils.cpp
Edward Yang 517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00

41 lines
1.5 KiB
C++

#include <torch/csrc/python_headers.h>
#include <stdarg.h>
#include <string>
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/cuda/override_macros.h>
#define THC_GENERIC_FILE "torch/csrc/generic/utils.cpp"
#include <THC/THCGenerateAllTypes.h>
#ifdef USE_CUDA
// NB: It's a list of *optional* CUDAStream; when nullopt, that means to use
// whatever the current stream of the device the input is associated with was.
std::vector<c10::optional<at::cuda::CUDAStream>> THPUtils_PySequence_to_CUDAStreamList(PyObject *obj) {
if (!PySequence_Check(obj)) {
throw std::runtime_error("Expected a sequence in THPUtils_PySequence_to_CUDAStreamList");
}
THPObjectPtr seq = THPObjectPtr(PySequence_Fast(obj, nullptr));
if (seq.get() == nullptr) {
throw std::runtime_error("expected PySequence, but got " + std::string(THPUtils_typename(obj)));
}
std::vector<c10::optional<at::cuda::CUDAStream>> streams;
Py_ssize_t length = PySequence_Fast_GET_SIZE(seq.get());
for (Py_ssize_t i = 0; i < length; i++) {
PyObject *stream = PySequence_Fast_GET_ITEM(seq.get(), i);
if (PyObject_IsInstance(stream, THCPStreamClass)) {
// Spicy hot reinterpret cast!!
streams.emplace_back( at::cuda::CUDAStream::unpack((reinterpret_cast<THCPStream*>(stream))->cdata) );
} else if (stream == Py_None) {
streams.emplace_back();
} else {
std::runtime_error("Unknown data type found in stream list. Need torch.cuda.Stream or None");
}
}
return streams;
}
#endif