pytorch/torch/csrc/autograd/python_function.h
Edward Yang 517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00

106 lines
3.1 KiB
C++

#pragma once
#include <torch/csrc/python_headers.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/autograd/saved_variable.h>
#include <torch/csrc/utils/object_ptr.h>
#include <c10/util/Optional.h>
#include <c10/DeviceGuard.h>
#include <vector>
#include <utility>
#include <memory>
namespace torch { namespace jit { struct Graph; }}
namespace torch { namespace autograd {
struct VariableInfo {
explicit VariableInfo(const Variable& var);
Variable zeros(at::OptionalDeviceGuard& device_guard) const;
at::Type* type;
at::Device device = at::kCPU;
std::vector<int64_t> size;
bool requires_grad;
};
// A Function which is implemented by a Python object (i.e., a THPFunction).
// Calls to 'apply' are forwarded to the Python method implementation.
struct PyFunction : public Function {
PyFunction(PyObject* obj) : obj(obj) {}
variable_list apply(variable_list&& inputs) override;
variable_list legacy_apply(const variable_list& inputs);
void release_variables() override;
std::string name() const override;
std::shared_ptr<Function> get_shared_ptr() override;
bool is_traceable() override;
// THPFunction this Function is wrapping.
PyObject* obj;
};
/**
* Cast an object into a tuple, if it is not a tuple already. Returns true
* if the original object was not a tuple.
*/
inline bool ensure_tuple(THPObjectPtr& obj) {
if (PyTuple_Check(obj.get()))
return false;
PyObject *tuple = PyTuple_New(1);
if (!tuple) throw python_error();
PyTuple_SET_ITEM(tuple, 0, obj.release());
obj = tuple;
return true;
}
}} // namespace torch::autograd
struct THPFunction {
PyObject_HEAD
PyObject *needs_input_grad;
// Python tuple of tensors whose variables we should save. Set
// by Python with 'save_for_backward'. If nullptr, no tensors were
// saved.
PyObject *to_save;
// Python tuple of tensors which are not differentiable. Set by
// Python with 'mark_non_differentiable'. If nullptr, no tensors were
// non-differentiable.
PyObject *non_differentiable;
// Python tuple of tensors which had inplace updates in the forward()
// pass. Set by Python with 'mark_dirty'. If nullptr, no tensors were
// modified inplace.
PyObject *dirty_tensors;
std::vector<torch::autograd::VariableInfo> output_info;
std::vector<torch::autograd::VariableInfo> input_info;
std::vector<torch::autograd::SavedVariable> saved_variables;
// For each input, true if the input is a THPVariable
std::vector<bool> is_variable_input;
char has_freed_buffers;
// The C++ wrapper for this Python function.
// See a comment in THPFunction_asFunction for details about this field.
torch::autograd::PyFunction cdata;
};
bool THPFunction_initModule(PyObject *module);
extern PyTypeObject THPFunctionType;
extern PyObject *THPFunctionClass;
// XXX: this function requires the GIL (it can have side effects).
std::shared_ptr<torch::autograd::PyFunction> THPFunction_asFunction(THPFunction* self);
inline bool THPFunction_Check(PyObject* obj) {
return PyObject_IsInstance(obj, (PyObject*)&THPFunctionType);
}