pytorch/torch/nn/modules/linear.py
2016-11-07 16:17:40 -05:00

59 lines
2.0 KiB
Python

import math
import torch
from torch.autograd import Variable
from .module import Module
class Linear(Module):
"""Applies a linear transformation to the incoming data, y = Ax + b
The input is a 2D mini-batch of samples, each of size in_features
The output will be a 2D Tensor of size mini-batch x out_features
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias. Default: True
Input Shape: [*, in_features] : Input can be of shape minibatch x in_features
Output Shape:[*, out_features] : Output is of shape minibatch x out_features
Members:
weight: the learnable weights of the module of shape (out_features x in_features)
bias: the learnable bias of the module of shape (out_features)
Examples:
>>> m = nn.Linear(20, 30)
>>> input = autograd.Variable(torch.randn(128, 20))
>>> output = m(input)
>>> print(output.size())
"""
def __init__(self, in_features, out_features, bias=True):
self.in_features = in_features
self.out_features = out_features
super(Linear, self).__init__(
weight=torch.Tensor(out_features, in_features),
bias=torch.Tensor(out_features) if bias else None
)
self.reset_parameters()
def reset_parameters(self):
stdv = 1./math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
if self.bias is None:
return self._backend.Linear()(input, self.weight)
else:
return self._backend.Linear()(input, self.weight, self.bias)
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
# TODO: Bilinear
# TODO: PartialLinear - maybe in sparse?