pytorch/torch/nn/modules/dropout.py
2016-11-07 16:17:40 -05:00

102 lines
3.9 KiB
Python

from .module import Module
class Dropout(Module):
"""Randomly zeroes some of the elements of the input tensor.
The elements to zero are randomized on every forward call.
Args:
p: probability of an element to be zeroed. Default: 0.5
inplace: If set to True, will do this operation in-place. Default: false
Input Shape: Any : Input can be of any shape
Output Shape:Same : Output is of the same shape as input
Examples:
>>> m = nn.Dropout(p=0.2)
>>> input = autograd.Variable(torch.randn(20, 16))
>>> output = m(input)
"""
def __init__(self, p=0.5, inplace=False):
super(Dropout, self).__init__()
self.p = p
self.inplace = inplace
def forward(self, input):
return self._backend.Dropout(self.p, self.training, self.inplace)(input)
def __repr__(self):
inplace_str = ', inplace' if self.inplace else ''
return self.__class__.__name__ + ' (' \
+ 'p = ' + str(self.p) \
+ inplace_str + ')'
class Dropout2d(Module):
"""Randomly zeroes whole channels of the input tensor.
The input is 4D (batch x channels, height, width) and each channel
is of size (1, height, width).
The channels to zero are randomized on every forward call.
Usually the input comes from Conv2d modules.
As described in the paper "Efficient Object Localization Using Convolutional
Networks" (http:arxiv.org/abs/1411.4280), if adjacent pixels within
feature maps are strongly correlated (as is normally the case in early
convolution layers) then iid dropout will not regularize the activations
and will otherwise just result in an effective learning rate decrease.
In this case, nn.Dropout2d will help promote independence between
feature maps and should be used instead.
Args:
p: probability of an element to be zeroed. Default: 0.5
inplace: If set to True, will do this operation in-place. Default: false
Input Shape: [*, *, *, *] : Input can be of any sizes of 4D shape
Output Shape:Same : Output is of the same shape as input
Examples:
>>> m = nn.Dropout2d(p=0.2)
>>> input = autograd.Variable(torch.randn(20, 16, 32, 32))
>>> output = m(input)
"""
def __init__(self, p=0.5, inplace=False):
super(Dropout2d, self).__init__()
self.p = p
self.inplace = inplace
def forward(self, input):
return self._backend.Dropout2d(self.p, self.training, self.inplace)(input)
def __repr__(self):
inplace_str=', inplace' if self.inplace else ''
return self.__class__.__name__ + ' (' \
+ 'p=' + str(self.p) \
+ inplace_str + ')'
class Dropout3d(Module):
"""Randomly zeroes whole channels of the input tensor.
The input is 5D (batch x channels, depth, height, width) and each channel
is of size (1, depth, height, width).
The channels to zero are randomized on every forward call.
Usually the input comes from Conv3d modules.
Args:
p: probability of an element to be zeroed. Default: 0.5
inplace: If set to True, will do this operation in-place. Default: false
Input Shape: [*, *, *, *, *] : Input can be of any sizes of 5D shape
Output Shape:Same : Output is of the same shape as input
Examples:
>>> m = nn.Dropout3d(p=0.2)
>>> input = autograd.Variable(torch.randn(20, 16, 4, 32, 32))
>>> output = m(input)
"""
def __init__(self, p=0.5, inplace=False):
super(Dropout3d, self).__init__()
self.p = p
self.inplace = inplace
def forward(self, input):
return self._backend.Dropout3d(self.p, self.training, self.inplace)(input)
def __repr__(self):
inplace_str=', inplace' if self.inplace else ''
return self.__class__.__name__ + ' (' \
+ 'p=' + str(self.p) \
+ inplace_str + ')'