pytorch/torch/nn/parallel/_functions.py
2018-02-28 16:46:47 -05:00

103 lines
3.6 KiB
Python

import torch
import torch.cuda.comm as comm
from torch.autograd import Function
class Broadcast(Function):
@staticmethod
def forward(ctx, target_gpus, *inputs):
if not all(input.is_cuda for input in inputs):
raise TypeError('Broadcast function not implemented for CPU tensors')
ctx.target_gpus = target_gpus
if len(inputs) == 0:
return tuple()
ctx.num_inputs = len(inputs)
ctx.input_device = inputs[0].get_device()
outputs = comm.broadcast_coalesced(inputs, ctx.target_gpus)
non_differentiables = []
for idx, input_requires_grad in enumerate(ctx.needs_input_grad[1:]):
if not input_requires_grad:
for output in outputs:
non_differentiables.append(output[idx])
ctx.mark_non_differentiable(*non_differentiables)
return tuple([t for tensors in outputs for t in tensors])
@staticmethod
def backward(ctx, *grad_outputs):
return (None,) + ReduceAddCoalesced.apply(ctx.input_device, ctx.num_inputs, *grad_outputs)
class ReduceAddCoalesced(Function):
@staticmethod
def forward(ctx, destination, num_inputs, *grads):
ctx.target_gpus = [grads[i].get_device() for i in range(0, len(grads), num_inputs)]
grads = [grads[i:i + num_inputs]
for i in range(0, len(grads), num_inputs)]
return comm.reduce_add_coalesced(grads, destination)
@staticmethod
def backward(ctx, *grad_outputs):
return (None, None,) + Broadcast.apply(ctx.target_gpus, *grad_outputs)
class Gather(Function):
@staticmethod
def forward(ctx, target_device, dim, *inputs):
assert all(map(lambda i: i.is_cuda, inputs))
ctx.target_device = target_device
ctx.dim = dim
ctx.input_gpus = tuple(map(lambda i: i.get_device(), inputs))
ctx.input_sizes = tuple(map(lambda i: i.size(ctx.dim), inputs))
return comm.gather(inputs, ctx.dim, ctx.target_device)
@staticmethod
def backward(ctx, grad_output):
return (None, None) + Scatter.apply(ctx.input_gpus, ctx.input_sizes, ctx.dim, grad_output)
class Scatter(Function):
@staticmethod
def forward(ctx, target_gpus, chunk_sizes, dim, input):
ctx.target_gpus = target_gpus
ctx.chunk_sizes = chunk_sizes
ctx.dim = dim
ctx.input_device = input.get_device() if input.is_cuda else -1
streams = None
if ctx.input_device == -1:
# Perform CPU to GPU copies in a background stream
streams = [_get_stream(device) for device in ctx.target_gpus]
outputs = comm.scatter(input, ctx.target_gpus, ctx.chunk_sizes, ctx.dim, streams)
# Synchronize with the copy stream
if streams is not None:
for i, output in enumerate(outputs):
with torch.cuda.device(ctx.target_gpus[i]):
main_stream = torch.cuda.current_stream()
main_stream.wait_stream(streams[i])
output.record_stream(main_stream)
return outputs
@staticmethod
def backward(ctx, *grad_output):
return None, None, None, Gather.apply(ctx.input_device, ctx.dim, *grad_output)
# background streams used for copying
_streams = None
def _get_stream(device):
"""Gets a background stream for copying between CPU and GPU"""
global _streams
if device == -1:
return None
if _streams is None:
_streams = [None] * torch.cuda.device_count()
if _streams[device] is None:
_streams[device] = torch.cuda.Stream(device)
return _streams[device]