pytorch/test/cpp/api
Will Feng 5099db08d4 Ignore nn::Functional submodules in nn::Module serialization (#19740)
Summary:
Currently, the Python API doesn't serialize layers that don't have weights (such as `nn.ReLU` and `nn.MaxPool2d`e.g. in https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py#L80-L81). If one saves a model that contains weight-less layers in Python and tries to load it into C++, the C++ module loading code (`torch::load(...)`) will throw an error complaining that the expected layers are not found in the serialized file (e.g. https://github.com/pytorch/vision/pull/728#issuecomment-480974175). This PR solves the problem by ignoring layers that are not serializable (which currently only include `nn::Functional`) in the C++ module serialization code (`torch::save(...)` and `torch::load(...)`), and the user is expected to use `nn::Functional` to wrap the weight-less layers so that they can be ignored when serializing / deserializing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19740

Differential Revision: D15100575

Pulled By: yf225

fbshipit-source-id: 956481a2355d1de45341585abedda05e35d2ee8b
2019-04-26 12:47:23 -07:00
..
any.cpp Fix Windows build and test in CI (#11716) 2018-11-13 16:35:54 -08:00
CMakeLists.txt Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
dataloader.cpp Jaliyae/chunk buffer fix (#17409) 2019-02-23 08:48:53 -08:00
expanding-array.cpp Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
init_baseline.h Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init_baseline.py Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init.cpp Fix torch::nn::init::orthogonal_ with CNNs (#18915) 2019-04-09 10:39:15 -07:00
integration.cpp Move isnan to C++ (#15722) 2019-01-08 10:42:33 -08:00
jit.cpp Fix test build (#19444) 2019-04-18 18:05:04 -07:00
memory.cpp Hide c10::optional and nullopt in torch namespace (#12927) 2018-10-26 00:08:04 -07:00
misc.cpp Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
module.cpp Apply modernize-use-override - 2/2 2019-02-13 21:01:28 -08:00
modules.cpp Rename BatchNorm running_variance to running_var (#17371) 2019-02-22 08:00:25 -08:00
optim_baseline.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim_baseline.py Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim.cpp Replace cursors with OrderedDict (#13427) 2018-11-07 11:10:05 -08:00
ordered_dict.cpp Replace cursors with OrderedDict (#13427) 2018-11-07 11:10:05 -08:00
parallel.cpp Remove OptionsGuard from ATen (#14524) 2018-11-30 13:30:35 -08:00
README.md Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
rnn.cpp Pretty printing of C++ modules (#15326) 2018-12-19 21:55:49 -08:00
sequential.cpp Add named submodule support to nn::Sequential (#17552) 2019-03-29 13:06:29 -07:00
serialize.cpp Ignore nn::Functional submodules in nn::Module serialization (#19740) 2019-04-26 12:47:23 -07:00
static.cpp Make call operator on module holder call forward (#15831) 2019-01-14 14:40:33 -08:00
support.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
tensor_cuda.cpp push magma init into lazyInitCUDA (#18527) 2019-04-03 12:47:34 -07:00
tensor_options_cuda.cpp Add ScalarType argument to Type::options() (#19270) 2019-04-21 21:16:07 -07:00
tensor_options.cpp Add ScalarType argument to Type::options() (#19270) 2019-04-21 21:16:07 -07:00
tensor.cpp Rename _local_scalar to item() (#13676) 2018-12-04 13:19:26 -08:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.