pytorch/torch/csrc/autograd/python_function.h

59 lines
1.5 KiB
C++

#pragma once
#include <Python.h>
#include <vector>
#include <utility>
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/utils/object_ptr.h"
// (class, gpu id, sizes)
using output_info_type = std::tuple<PyObject *, int, std::vector<long>>;
// (tensor, version when saved, version counter)
// or
// (None, 0, nullptr)
using saved_var_info_type = std::tuple<THPObjectPtr, int, std::unique_ptr<torch::autograd::VariableVersion>>;
namespace torch { namespace autograd {
struct PyFunction : public Function {
PyFunction(PyObject* obj) : obj(obj) {}
virtual variable_list apply(const variable_list& inputs) override;
virtual void releaseVariables() override;
virtual std::string name() override;
PyObject* obj;
};
}} // namespace torch::autograd
struct THPFunction {
PyObject_HEAD
PyObject *needs_input_grad;
PyObject *to_save;
PyObject *shared_pairs;
PyObject *non_differentiable;
PyObject *dirty_tensors;
std::vector<output_info_type> *output_info;
std::vector<saved_var_info_type> *saved_variables;
int num_inputs;
char has_freed_buffers;
torch::autograd::PyFunction cdata;
};
bool THPFunction_initModule(PyObject *module);
extern PyObject *THPFunctionClass;
extern PyObject *THPStochasticFunctionClass;
std::shared_ptr<torch::autograd::PyFunction> THPFunction_asFunction(THPFunction* self);
inline bool THPFunction_Check(PyObject* obj) {
return PyObject_IsInstance(obj, THPFunctionClass);
}