mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22010 torch.quantization module with observers and conversion routines Reviewed By: zafartahirov Differential Revision: D15554183 fbshipit-source-id: 05a3fabe28dd701978b8ecebf5bfc3a4c044ba5c
256 lines
9.1 KiB
Python
256 lines
9.1 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
import torch.nn as nn
|
|
import torch.nn.quantized as nnq
|
|
import torch
|
|
|
|
def propagate_qconfig_helper(module, qconfig_dict, qconfig_parent=None, prefix=''):
|
|
r"""This is a helper function for `propagate_qconfig`
|
|
|
|
Args:
|
|
module: input module
|
|
qconfig_dict: dictionary that maps from name of submodule to quantization
|
|
configuration
|
|
qconfig_parent: quantization config of parent module, we will fallback to
|
|
this config when there is no specified config for current
|
|
module
|
|
prefix: corresponding prefix of the current module, used as key in
|
|
qconfig_dict
|
|
|
|
Return:
|
|
None, module is modified inplace with qconfig attached
|
|
"""
|
|
if not hasattr(module, 'qconfig'):
|
|
module.qconfig = None
|
|
if qconfig_dict and prefix in qconfig_dict:
|
|
module.qconfig = qconfig_dict[prefix]
|
|
else:
|
|
module.qconfig = qconfig_parent
|
|
print('prefix:', prefix, 'qconfig: ', module.qconfig)
|
|
|
|
for name, child in module.named_children():
|
|
module_prefix = prefix + '.' + name if prefix else name
|
|
propagate_qconfig_helper(child, qconfig_dict, module.qconfig, module_prefix)
|
|
|
|
def propagate_qconfig(module, qconfig_dict=None):
|
|
r"""Propagate qconfig through the module hierarchy and assign `qconfig`
|
|
attribute on each leaf module
|
|
|
|
Args:
|
|
module: input module
|
|
qconfig_dict: dictionary that maps from name of submodule to quantization
|
|
configuration, qconfig applies to all submodules of a given
|
|
module unless qconfig for the submodules are specified(when the
|
|
submodule already has qconfig attribute)
|
|
|
|
Return:
|
|
None, module is modified inplace with qconfig attached
|
|
"""
|
|
if qconfig_dict is None:
|
|
qconfig_dict = {}
|
|
propagate_qconfig_helper(module, qconfig_dict)
|
|
|
|
def _observer_forward_hook(self, input, output):
|
|
r"""Forward hook that calls observer on the output
|
|
"""
|
|
self.observer(output)
|
|
|
|
# TODO(jerryzh): remove_observer?
|
|
def add_observer(module):
|
|
r"""Add observer for the leaf child of the module.
|
|
|
|
This function insert observer module to all leaf child module that
|
|
has a valid qconfig attribute.
|
|
|
|
Args:
|
|
module: input module with qconfig attributes for all the leaf modules
|
|
that we want to quantize
|
|
|
|
Return:
|
|
None, module is modified inplace with added observer modules and
|
|
forward_hooks
|
|
"""
|
|
for child in module.children():
|
|
add_observer(child)
|
|
|
|
# Insert observers only for leaf nodes, note that this observer is for
|
|
# the output of the module, for input QuantStub will observe them
|
|
if hasattr(module, 'qconfig') and module.qconfig is not None and len(module._modules) == 0:
|
|
# observer and hook will be gone after we swap the module
|
|
module.add_module('observer', module.qconfig.activation())
|
|
module.register_forward_hook(_observer_forward_hook)
|
|
|
|
class QuantWrapper(nn.Module):
|
|
r"""A wrapper class that wraps the input module, adds QuantStub and
|
|
DeQuantStub and surround the call to module with call to quant and dequant
|
|
modules.
|
|
|
|
This is used by the `quantization` utility functions to add the quant and
|
|
dequant modules, before `convert` function `QuantStub` will just be observer,
|
|
it observes the input tensor, after `convert`, `QuantStub`
|
|
will be swapped to `nnq.Quantize` which does actual quantization. Similarly
|
|
for `DeQuantStub`.
|
|
"""
|
|
def __init__(self, module):
|
|
super(QuantWrapper, self).__init__()
|
|
qconfig = module.qconfig if hasattr(module, 'qconfig') else None
|
|
self.quant = QuantStub(qconfig)
|
|
self.dequant = DeQuantStub()
|
|
self.module = module
|
|
|
|
def forward(self, X):
|
|
X = self.quant(X)
|
|
X = self.module(X)
|
|
return self.dequant(X)
|
|
|
|
def add_quant_dequant(module):
|
|
r"""Wrap the leaf child module in QuantWrapper if it has a valid qconfig
|
|
Note that this function will modify the children of module inplace and it
|
|
can return a new module which wraps the input module as well.
|
|
|
|
Args:
|
|
module: input module with qconfig attributes for all the leaf modules
|
|
that we want to quantize
|
|
|
|
Return:
|
|
Either the inplace modified module with submodules wrapped in
|
|
`QuantWrapper` based on qconfig or a new `QuantWrapper` module which
|
|
wraps the input module, the latter case only happens when the input
|
|
module is a leaf module and we want to quantize it.
|
|
"""
|
|
if len(module._modules) == 0 and hasattr(module, 'qconfig') and module.qconfig:
|
|
return QuantWrapper(module)
|
|
|
|
for name, child in module.named_children():
|
|
module._modules[name] = add_quant_dequant(child)
|
|
return module
|
|
|
|
def prepare(module, qconfig_dict=None):
|
|
r"""Prepares the module for calibration or training given a qconfig_dict.
|
|
Note that the module will be modified inplace but in case the input module
|
|
is a leaf module, a wrapped module will be returned.
|
|
|
|
Args:
|
|
mod: input module
|
|
qconfig_dict: dictionary that maps from name of submodule to quantization
|
|
configuration
|
|
Return:
|
|
A module with qconfig propogated, observer and quant dequant or fake
|
|
quant modules attached, a module that is ready for calibration or
|
|
training
|
|
"""
|
|
propagate_qconfig(module, qconfig_dict)
|
|
if qconfig_dict:
|
|
module = add_quant_dequant(module)
|
|
add_observer(module)
|
|
return module
|
|
|
|
class QuantStub(nn.Module):
|
|
r"""Quantize stub module, before calibration, this is same as an observer,
|
|
it will be swapped as `nnq.Quantize` in `convert`.
|
|
|
|
Args:
|
|
qconfig: quantization configuration for the tensor,
|
|
if qconfig is not provided, we will get qconfig from parent modules
|
|
"""
|
|
def __init__(self, qconfig=None):
|
|
super(QuantStub, self).__init__()
|
|
if qconfig:
|
|
self.qconfig = qconfig
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
class DeQuantStub(nn.Module):
|
|
r"""Dequantize stub module, before calibration, this is same as identity,
|
|
this will be swapped as `nnq.DeQuantize` in `convert`.
|
|
"""
|
|
def __init__(self):
|
|
super(DeQuantStub, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
def quantize(module, eval_fn, eval_args, qconfig_dict=None):
|
|
r"""Converts a float module to quantized module.
|
|
|
|
First it will prepare the module for calibration or training, then it calls
|
|
`eval_fn` which will run the calibration step or training step,
|
|
after that we will call `convert` which will convert the module to a
|
|
quantized module.
|
|
|
|
When `qconfig_dict` is None or empty dictionary, we will assume user will
|
|
insert quant/dequant stubs and add qconfig in approporiate places.
|
|
When `qconfig_dict` is not None or empty dictionary, we will add quant/dequant
|
|
stubs using QuantWrapper for all the leaf modules.
|
|
|
|
Args:
|
|
module: input module
|
|
eval_fn: a function for evaluating the prepared module, can be a
|
|
function that simply runs the prepared module or a training loop
|
|
eval_args: positional arguments for `eval_fn`
|
|
qconfig_dict: dictionary that maps from name of submodule to quantization
|
|
configuration, qconfig applies to all submodules of a given
|
|
module unless qconfig for the submodules are specified(when the
|
|
submodule already has qconfig attribute)
|
|
|
|
|
|
Return:
|
|
A quantized module
|
|
"""
|
|
module = prepare(module, qconfig_dict)
|
|
eval_fn(module, eval_args)
|
|
convert(module)
|
|
return module
|
|
|
|
# Map for swapping float module to quantized ones
|
|
DEFAULT_MODULE_MAPPING = {
|
|
torch.nn.Linear: nnq.Linear,
|
|
torch.nn.ReLU: nnq.ReLU,
|
|
QuantStub: nnq.Quantize,
|
|
}
|
|
|
|
def convert(module, mapping=DEFAULT_MODULE_MAPPING):
|
|
r"""Converts the float module with observers(where we can get quantization
|
|
parameters) to a quantized module.
|
|
Args:
|
|
module: calibrated module with observers
|
|
mapping: a dictionary that maps from float module type to quantized
|
|
module type, can be overwrritten to allow swapping user defined Modules
|
|
Return:
|
|
A quantized module
|
|
"""
|
|
module_swapped = swap_module(module, mapping)
|
|
|
|
reassign = {}
|
|
for name, mod in module.named_children():
|
|
new_mod = convert(mod, mapping)
|
|
if new_mod is not mod:
|
|
reassign[name] = new_mod
|
|
|
|
for name, mod in reassign.items():
|
|
setattr(module_swapped, name, mod)
|
|
|
|
return module_swapped
|
|
|
|
def swap_module(mod, mapping):
|
|
r"""Swaps the module if it has a quantized counterpart and it has an
|
|
`observer` attached.
|
|
|
|
Args:
|
|
mod: input module
|
|
mapping: a dictionary that maps from nn module to nnq module
|
|
|
|
Return:
|
|
The corresponding quantized module of `mod`
|
|
"""
|
|
new_mod = mod
|
|
print('swapping:', mod)
|
|
if hasattr(mod, 'observer'):
|
|
if type(mod) in mapping:
|
|
new_mod = mapping[type(mod)].from_float(mod)
|
|
|
|
if type(mod) == DeQuantStub:
|
|
new_mod = nnq.DeQuantize.from_float(mod)
|
|
|
|
return new_mod
|