pytorch/torch/nn/quantized/modules/linear.py
Jerry Zhang 5040d52a5a torch.quantization conversion utilities, observers for eager mode quantization (#22010)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22010

torch.quantization module with observers and conversion routines

Reviewed By: zafartahirov

Differential Revision: D15554183

fbshipit-source-id: 05a3fabe28dd701978b8ecebf5bfc3a4c044ba5c
2019-07-09 10:51:38 -07:00

168 lines
6.8 KiB
Python

from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from ...modules.module import Module
from ...modules.linear import Linear as NNLinear
class Quantize(Module):
r"""Quantizes an incoming tensor
Args:
`out_scale`: scale of the output Quantized Tensor
`out_zero_point`: zero_point of output Quantized Tensor
`out_dtype`: data type of output Quantized Tensor
Attributes:
`out_scale`, `out_zero_point`, `out_dtype`
Examples::
>>> t = torch.tensor([[1., -1.], [1., -1.]])
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
>>> qm = Quantize(scale, zero_point, dtype)
>>> qt = qm(t)
>>> print(qt)
>>> tensor([[ 1., -1.],
> [ 1., -1.]], size=(2, 2), dtype=torch.qint8, scale=1.0, zero_point=2)
"""
def __init__(self, out_scale, out_zero_point, out_dtype):
super(Quantize, self).__init__()
self.register_buffer('out_scale', torch.tensor([out_scale]))
self.register_buffer('out_zero_point', torch.tensor([out_zero_point], dtype=torch.long))
self.out_dtype = out_dtype
def forward(self, X):
return torch.quantize_linear(X, self.out_scale.item(),
self.out_zero_point.item(), self.out_dtype)
@staticmethod
def from_float(mod):
assert hasattr(mod, 'observer')
qparams = mod.observer.calculate_qparams()
return Quantize(qparams[0].item(), qparams[1].item(), mod.observer.dtype)
class DeQuantize(Module):
r"""Dequantizes an incoming tensor
Examples::
>>> input = torch.tensor([[1., -1.], [1., -1.]])
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
>>> qm = Quantize(scale, zero_point, dtype)
>>> quantized_input = qm(input)
>>> dqm = DeQuantize()
>>> dequantized = dqm(quantized_input)
>>> print(dequantized)
>>> tensor([[ 1., -1.],
[ 1., -1.]], dtype=torch.float32)
"""
def __init__(self):
super(DeQuantize, self).__init__()
def forward(self, Xq):
return Xq.dequantize()
@staticmethod
def from_float(mod):
return DeQuantize()
class Linear(NNLinear):
r"""
A quantized linear module with quantized tensor as inputs
and outputs.
We adopt the same interface as `torch.nn.Linear`, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear
for documentation.
Similar to `torch.nn.Linear`, attributes will be randomly initialized at
module creation time and will be overwritten later
Attributes:
weight: the non-learnable quantized weights of the
module which are of shape :math:`(\text{out\_features}, \text{in\_features})`.
bias: the non-learnable bias of the module of shape :math:`(\text{out\_features})`.
If :attr:`bias` is ``True``, the values are initialized to zero.
out_scale: `scale` parameter of output Quantized Tensor, type: float
out_zero_point: `zero_point` parameter for output Quantized Tensor, type: long
Examples::
>>> m = nn.quantized.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
__constants__ = ['bias', 'in_features', 'out_features']
def __init__(self, in_features, out_features, bias=True):
assert bias, 'nobias is not supported in Quantized Linear module yet'
super(Linear, self).__init__(in_features, out_features, bias)
del self.weight
del self.bias
qweight = torch._empty_affine_quantized(
[out_features, in_features], scale=1, zero_point=0,
dtype=torch.qint8)
qbias = torch._empty_affine_quantized(
[out_features], scale=1, zero_point=0, dtype=torch.qint32)
self.register_buffer('_packed_weight',
torch.ops.quantized.fbgemm_linear_prepack(qweight))
self.register_buffer('bias', qbias)
self.register_buffer('out_scale', torch.Tensor([1]))
self.register_buffer('out_zero_point', torch.Tensor([0]))
@property
def weight(self):
return torch.ops.quantized.fbgemm_linear_unpack(self._packed_weight)
@weight.setter
def weight(self, w):
self._packed_weight = torch.ops.quantized.fbgemm_linear_prepack(w)
def forward(self, x):
Y_q = torch.ops.quantized.fbgemm_linear(
x, self._packed_weight,
self.bias,
self.out_scale,
self.out_zero_point)
return Y_q
def _save_to_state_dict(self, destination, prefix, keep_vars):
super()._save_to_state_dict(destination, prefix, keep_vars)
destination[prefix + 'weight'] = torch.ops.quantized.fbgemm_linear_unpack(destination[prefix + '_packed_weight'])
destination.pop(prefix + '_packed_weight')
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
self._packed_weight = torch.ops.quantized.fbgemm_linear_prepack(state_dict[prefix + 'weight'])
self.bias.copy_(state_dict[prefix + 'bias'])
state_dict.pop(prefix + 'weight')
state_dict.pop(prefix + 'bias')
super()._load_from_state_dict(state_dict, prefix, local_metadata, False,
missing_keys, unexpected_keys, error_msgs)
return
# TODO: support initializing from quantization parameters when Quantizer is
# exposed in python
@staticmethod
def from_float(mod):
r"""Create a quantized module from a float module or qparams_dict
Args: `mod` a float module, either produced by torch.quantization utilities
or directly from user
"""
assert type(mod) == NNLinear, 'nnq.Linear.from_float only works for nn.Linear'
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
assert hasattr(mod, 'observer'), 'Input float module must have observer attached'
activation_observer = mod.observer
act_qparams = activation_observer.calculate_qparams()
weight_observer = mod.qconfig.weight()
weight_observer(mod.weight)
wt_qparams = weight_observer.calculate_qparams()
bias_scale = (wt_qparams[0] * act_qparams[0]).float()
qweight = torch.quantize_linear(mod.weight.float(), wt_qparams[0], wt_qparams[1].long().item(), torch.qint8)
qbias = torch.quantize_linear(mod.bias.float(), bias_scale, 0, torch.qint32)
qlinear = Linear(mod.in_features, mod.out_features)
qlinear._packed_weight = torch.ops.quantized.fbgemm_linear_prepack(qweight)
qlinear.bias = qbias
qlinear.out_scale = torch.tensor([act_qparams[0]])
qlinear.out_zero_point = torch.tensor([act_qparams[1]])
return qlinear