mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76320 Approved by: https://github.com/ezyang
383 lines
18 KiB
Python
383 lines
18 KiB
Python
from torchgen.model import (
|
|
Argument,
|
|
DispatchKey,
|
|
FunctionSchema,
|
|
BaseType,
|
|
BaseTy,
|
|
Return,
|
|
Annotation,
|
|
NativeFunction,
|
|
OperatorName,
|
|
BackendIndex,
|
|
BackendMetadata,
|
|
DeviceCheckType,
|
|
SchemaKind,
|
|
Variant,
|
|
)
|
|
from torchgen.utils import (
|
|
concatMap,
|
|
)
|
|
|
|
|
|
from typing import List, Tuple, Sequence, Dict
|
|
from collections import defaultdict
|
|
|
|
# See Note: [Out ops with functional variants that don't get grouped properly]
|
|
OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
|
|
# This has a functional variant, but it's currently marked private.
|
|
# This function should be marked private as well (*_backward ops aren't exposed to python anyway).
|
|
"adaptive_avg_pool3d_backward.grad_input",
|
|
# There's a functional variant, _slow_conv2d_backward.output_mask, that isn't grouped properly.
|
|
# Maybe we can kill this operator in favor of convolution_backward?
|
|
"_slow_conv2d_backward.grad_input",
|
|
]
|
|
|
|
|
|
# See Note: [Mutable ops that cannot get an out variant]
|
|
MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [
|
|
# should be out=?
|
|
"_cummax_helper",
|
|
# should be out=?
|
|
"_cummin_helper",
|
|
]
|
|
|
|
INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
|
|
# polygamma and polygamma.out both exist, but have a
|
|
# pre-self arg (while polygamma_ does not)
|
|
# We should either fix this schema so it can be grouped properly,
|
|
# or allow the codegen to generate new functional/out= NativeFunctions for this op
|
|
# (which would require changing its overload name to prevent overload ambiguity).
|
|
"polygamma_"
|
|
]
|
|
|
|
# Groups "similar" NativeFunctions together
|
|
# example add.Tensor, add_.Tensor, add.out
|
|
# "similar" NativeFunctions are all expected to have an identical `signature()`,
|
|
# But have differing SchemaKinds.
|
|
def pre_group_native_functions(
|
|
native_functions: Sequence[NativeFunction],
|
|
) -> Dict[FunctionSchema, Dict[SchemaKind, NativeFunction]]:
|
|
pre_grouped_native_functions: Dict[
|
|
FunctionSchema, Dict[SchemaKind, NativeFunction]
|
|
] = defaultdict(dict)
|
|
for f in native_functions:
|
|
d = pre_grouped_native_functions[f.func.signature()]
|
|
assert f.func.kind() not in d
|
|
d[f.func.kind()] = f
|
|
return pre_grouped_native_functions
|
|
|
|
|
|
# Helper function: given an inplace FunctionSchema, generate its corresponding out= variant
|
|
# Example before:
|
|
# _add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
|
|
# Example after:
|
|
# _add_relu.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out)
|
|
def self_to_out_signature(func: FunctionSchema) -> FunctionSchema:
|
|
# Generating an out= schema from an inplace schema.
|
|
assert func.kind() == SchemaKind.inplace
|
|
assert func.arguments.self_arg is not None
|
|
# The new out= schema has:
|
|
# - a new out argument with the same type as "func" (but with a mutable annotation)
|
|
# - The returns (if any) now alias the out= argument instead of "func"
|
|
# - an "out" overload name
|
|
return FunctionSchema(
|
|
name=func.name.remove_inplace().with_overload(
|
|
"out" if not func.name.overload_name else f"{func.name.overload_name}_out"
|
|
),
|
|
arguments=func.arguments.remove_self_annotation().with_out_args(
|
|
[
|
|
Argument(
|
|
name="out",
|
|
type=func.arguments.self_arg.argument.type,
|
|
default=None,
|
|
annotation=func.arguments.self_arg.argument.annotation,
|
|
)
|
|
]
|
|
),
|
|
returns=func.returns,
|
|
)
|
|
|
|
|
|
# Helper function: given a mutable FunctionSchema, generate its corresponding out= variant
|
|
# Example before:
|
|
# _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) # noqa: B950
|
|
# Example after:
|
|
# _fused_moving_avg_obs_fq_helper.out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!)) # noqa: B950
|
|
def mutable_to_out_signature(func: FunctionSchema) -> FunctionSchema:
|
|
# Generating an out= schema from a mutable schema.
|
|
assert func.kind() == SchemaKind.mutable
|
|
# The new out= schema has:
|
|
# - Any non-aliased tensor-like returns are converted to mutable, aliased out= arguments
|
|
# (if the argument is a tensor then we also return it for method chaining,
|
|
# otherwise we return nothing)
|
|
# - an "out" overload name
|
|
#
|
|
# Note that:
|
|
# (1) This also means that we can *only* generate an out= variant from a mutable schema
|
|
# if the mutable schema has at least one tensor-like non-aliasing return.
|
|
# (2) The generated out= variant still has mutable positional arguments,
|
|
# but if necessary we could probably add another out= variant that also
|
|
# functionalizes the mutable arguments (a functional_out variant)
|
|
|
|
# More of a sanity check - our existing restrictions on schemas should enforce that
|
|
# mutable schema kinds never return their mutable arguments.
|
|
assert not any(
|
|
r.annotation is not None and r.annotation.is_write for r in func.returns
|
|
)
|
|
|
|
tensorlike_rets = [r for r in func.returns if r.type.is_tensor_like()]
|
|
assert len(tensorlike_rets) > 0
|
|
|
|
used_annotations = concatMap(
|
|
lambda a: [] if a.annotation is None else a.annotation.alias_set,
|
|
func.arguments.flat_all,
|
|
)
|
|
valid_annotations = [
|
|
x for x in "abcdefghijklmnopqrstuvwxyz" if x not in used_annotations
|
|
]
|
|
|
|
all_rets_are_tensors = all(r.type == BaseType(BaseTy.Tensor) for r in func.returns)
|
|
|
|
new_out_args: List[Argument] = []
|
|
# The end result of new_returns is that:
|
|
# - If every return is a plain tensor, then the new returns == the old returns, but with the out= alias annotations added.
|
|
# - Otherwise, none of the out arguments show up in the returns (and we're only left with non-tensor-like returns, if any).
|
|
new_returns: List[Return] = []
|
|
for (i, r) in enumerate(func.returns):
|
|
if r.type.is_tensor_like():
|
|
new_out = Argument(
|
|
name=f"out{i}",
|
|
type=r.type,
|
|
default=None,
|
|
annotation=Annotation.parse(f"{valid_annotations[i]}!"),
|
|
)
|
|
new_out_args.append(new_out)
|
|
if all_rets_are_tensors:
|
|
# The convention for out= schemas is that they only return their out arguments
|
|
# if the return is a plain Tensor (or if it's a tuple of plain Tensors)
|
|
new_ret = Return(
|
|
name=None, type=new_out.type, annotation=new_out.annotation
|
|
)
|
|
new_returns.append(new_ret)
|
|
else:
|
|
new_returns.append(r)
|
|
|
|
return FunctionSchema(
|
|
name=func.name.remove_inplace().with_overload(
|
|
"out" if not func.name.overload_name else f"{func.name.overload_name}_out"
|
|
),
|
|
arguments=func.arguments.with_out_args(new_out_args),
|
|
returns=tuple(new_returns),
|
|
)
|
|
|
|
|
|
# This function, given function of one SchemaKind, as well as a target SchemaKind,
|
|
# generates a new NativeFunction with the same properties, but using the target SchemaKind.
|
|
# We only actually generate functions for either functional or out= SchemaKinds.
|
|
# This function returns a tuple, with:
|
|
# - The generated NativeFunction
|
|
# - a dictionary of `BackendIndex` objects, describing which dispatch keys
|
|
# we will generate kernels for, for the new NativeFunction.
|
|
# Details are in the function, but we only generate composite kernels (in some cases) today.
|
|
def generate_function(
|
|
f: NativeFunction, k: SchemaKind
|
|
) -> Tuple[NativeFunction, Dict[DispatchKey, Dict["OperatorName", "BackendMetadata"]]]:
|
|
from torchgen.api import cpp
|
|
|
|
if k == SchemaKind.functional:
|
|
assert f.func.kind() != SchemaKind.functional
|
|
gets_composite_kernel = True
|
|
# The new "functional" NativeFunction has:
|
|
# - any mutable arguments have been converted into (immutable) returns.
|
|
# (if a mutable argument was not also a return, it gets converted to one)
|
|
# - a "functional" overload name.
|
|
# The default grouping logic in signature() actually already does this,
|
|
# so we can piggy-back off it (but we still want return names)
|
|
func = f.func.signature(keep_return_names=True).with_name(
|
|
f.func.name.remove_inplace().with_overload(
|
|
"functional"
|
|
if not f.func.name.overload_name
|
|
else f"{f.func.name.overload_name}_functional"
|
|
)
|
|
)
|
|
elif k == SchemaKind.out:
|
|
# We generate out= ops mostly just so that we can pair up NativeFunctions into groups easily,
|
|
# but at least today, there is no good reason to actually use them.
|
|
# we'll generate a dispatcher entry for them, but won't actually register any kernels for them.
|
|
gets_composite_kernel = False
|
|
if f.func.kind() == SchemaKind.inplace:
|
|
func = self_to_out_signature(f.func)
|
|
elif f.func.kind() == SchemaKind.mutable:
|
|
func = mutable_to_out_signature(f.func)
|
|
else:
|
|
raise AssertionError(
|
|
"We only bother generating out= functions from either inplace or mutable variants"
|
|
)
|
|
else:
|
|
raise AssertionError(
|
|
"We currently only generate either functional or out= NativeFunctions"
|
|
)
|
|
|
|
if gets_composite_kernel:
|
|
backend_metadata = {
|
|
DispatchKey.CompositeExplicitAutograd: {
|
|
func.name: BackendMetadata(cpp.name(func), structured=False)
|
|
}
|
|
}
|
|
else:
|
|
backend_metadata = {}
|
|
|
|
return (
|
|
NativeFunction(
|
|
func=func,
|
|
use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors,
|
|
# These generated fn's aren't meant to be user friendly- don't generate methods.
|
|
variants=set([Variant.function]),
|
|
structured=False,
|
|
structured_delegate=None,
|
|
structured_inherits=None,
|
|
precomputed=None,
|
|
autogen=[],
|
|
ufunc_inner_loop={},
|
|
manual_kernel_registration=False,
|
|
manual_cpp_binding=False,
|
|
python_module=None,
|
|
category_override=None,
|
|
device_guard=False,
|
|
device_check=DeviceCheckType.NoCheck,
|
|
loc=f.loc,
|
|
cpp_no_default_args=set(),
|
|
is_abstract=f.is_abstract,
|
|
has_composite_implicit_autograd_kernel=False,
|
|
has_composite_explicit_autograd_kernel=gets_composite_kernel,
|
|
# Every generated NativeFunction gets a "generated" tag, so it's easy to tell
|
|
# which NativeFunction objects did not come directly from native_functions.yaml.
|
|
tags=set(["generated"]),
|
|
),
|
|
backend_metadata,
|
|
)
|
|
|
|
|
|
# This function is responsible for adding generated NativeFunctions which don't appear
|
|
# explicitly in the codegen.
|
|
# You can inspect the full list of NativeFunctions yourself with the torchgen package, by running
|
|
# torchgen.parse_native_yaml("aten/src/ATen/native/native_functions.yaml", "aten/src/ATen/native/tags.yaml")
|
|
# (Maybe we should make a friendly API for this)
|
|
#
|
|
# Note: this function *mutates* its two inputs,
|
|
# adding the new NativeFunctions / BackendMetadata to them
|
|
def add_generated_native_functions(
|
|
rs: List[NativeFunction],
|
|
indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]],
|
|
) -> None:
|
|
# The main code for gnerating new NativeFunctions
|
|
# First we group of NaitveFunctions by schema kind,
|
|
# then we detect which ones are missing and generate them.
|
|
pre_grouped_native_functions = pre_group_native_functions(rs)
|
|
for k, d in pre_grouped_native_functions.items():
|
|
has_functional = SchemaKind.functional in d
|
|
has_inplace = SchemaKind.inplace in d
|
|
has_mutable = SchemaKind.mutable in d
|
|
has_out = SchemaKind.out in d
|
|
|
|
# We automatically generate a few native functions that don't exist in the yaml, for a few reasons:
|
|
# (1) If an operator has an inplace/out= variant but no functional variant, we can generate
|
|
# a simple functional variant that the functionalization pass can consume.
|
|
# (2) If an operator has an inplace and functional but no out= variant, we generate an out=
|
|
# variant, mostly so we can easily pair up functions into NativeFunctionsGroup,
|
|
# while maintaining the constraint that the out= variant is "required".
|
|
#
|
|
# For now, we don't bother generated NativeFunctions for existing operators
|
|
# that only have a functional variant.
|
|
if has_mutable or has_inplace or has_out:
|
|
|
|
# Don't bother generating functions trio's for native functions that bypass the dispatcher.
|
|
are_manual = all(f.manual_cpp_binding for f in d.values())
|
|
# Don't bother generating functional + out= variants for view operators
|
|
has_view_ops = (
|
|
has_inplace and "inplace_view" in d[SchemaKind.inplace].tags
|
|
) or any(f.is_view_op for f in d.values())
|
|
# Don't generate the other variants for CompositeImplicitAutograd operators.
|
|
# We could probably do this, but the main benefit of generating the function triplets
|
|
# is for transforms that need them, and transforms don't need to act directly
|
|
# on CompositeImplicitAutograd operators (since we let them decompose).
|
|
are_composite_implicit = all(
|
|
f.has_composite_implicit_autograd_kernel for f in d.values()
|
|
)
|
|
if are_manual or has_view_ops or are_composite_implicit:
|
|
continue
|
|
if has_out and len(d.values()) == 1:
|
|
# Note: [Out ops with functional variants that don't get grouped properly]
|
|
# In theory we could validly have an out= operator in native_functions.yaml
|
|
# that has no other variants.
|
|
# But today, all of the operators where that's the case actually do have
|
|
# functional variants, that we are just unable to pair up properly.
|
|
# I think banning this all together is probably safer
|
|
# (you can always add a functional variant yourself if you want to add a new out= operator).
|
|
#
|
|
# We should probably fix the existing cases; this check is to prevent us from adding more over time.
|
|
if (
|
|
str(d[SchemaKind.out].func.name)
|
|
not in OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY
|
|
):
|
|
raise AssertionError(
|
|
f"Found an out= operator that we could not find any other variants of: {str(d[SchemaKind.out].func)}"
|
|
)
|
|
continue
|
|
|
|
# Some inplace ops that have problematic schemas (that we should fix), which prevent us
|
|
# from generating out= and functional variants
|
|
if (
|
|
has_inplace
|
|
and str(d[SchemaKind.inplace].func.name)
|
|
in INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY
|
|
):
|
|
continue
|
|
|
|
base_fn = (
|
|
d[SchemaKind.inplace]
|
|
if has_inplace
|
|
else d[SchemaKind.mutable]
|
|
if has_mutable
|
|
else d[SchemaKind.out]
|
|
)
|
|
|
|
# Note: [Mutable ops that cannot get an out variant]
|
|
# We can only generate an out= variant if either:
|
|
# - the original function has tensor-like returns (since we can convert them to out kwargs)
|
|
# - or it's inplace (since we can convert `self` to an out kwarg)
|
|
# There are only two functions that don't fit this criteria today though,
|
|
# and they both look like they should be fixed to be out= variants,
|
|
# so if feels safer to ban this schema all-together
|
|
gets_out_variant = not has_out and (
|
|
base_fn.func.kind() == SchemaKind.inplace
|
|
or any(r.type.is_tensor_like() for r in base_fn.func.returns)
|
|
)
|
|
if not has_out and not gets_out_variant:
|
|
if (
|
|
str(base_fn.func.name)
|
|
not in MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT
|
|
):
|
|
raise AssertionError(
|
|
f"""Found a mutable operator that we could not generate an out= variant for: {str(base_fn.func)}.
|
|
These operators are problematic, because we can't easily auto-generate functionalization code for them. If you really need
|
|
the operator have the schema mentioned, that add the name of the operator to the allow-list. Otherwise if possible,
|
|
please convert it to an inplace operator"""
|
|
)
|
|
|
|
# Generate an out= variant
|
|
if gets_out_variant:
|
|
fn, metadata = generate_function(base_fn, SchemaKind.out)
|
|
d[SchemaKind.out] = fn
|
|
BackendIndex.grow_index(indices, metadata)
|
|
rs.append(fn)
|
|
|
|
# Generate a functional variant, but only do it if the operator got an out= variant
|
|
# (Functional variants are only useful if we can group up the variants,
|
|
# which we can only do if they have an out= variant)
|
|
if not has_functional and (has_out or gets_out_variant):
|
|
fn, metadata = generate_function(base_fn, SchemaKind.functional)
|
|
d[SchemaKind.functional] = fn
|
|
BackendIndex.grow_index(indices, metadata)
|
|
rs.append(fn)
|