pytorch/test/cpp/api/optim.cpp
Will Feng 57a4b7c55d Re-organize C++ API torch::nn folder structure (#26262)
Summary:
This PR aims to re-organize C++ API `torch::nn` folder structure in the following way:
- Every module in `torch/csrc/api/include/torch/nn/modules/` (except `any.h`, `named_any.h`, `modulelist.h`, `sequential.h`, `embedding.h`) has a strictly equivalent Python file in `torch/nn/modules/`. For  example:
`torch/csrc/api/include/torch/nn/modules/pooling.h` -> `torch/nn/modules/pooling.py`
`torch/csrc/api/include/torch/nn/modules/conv.h` -> `torch/nn/modules/conv.py`
`torch/csrc/api/include/torch/nn/modules/batchnorm.h` -> `torch/nn/modules/batchnorm.py`
`torch/csrc/api/include/torch/nn/modules/sparse.h` -> `torch/nn/modules/sparse.py`
- Containers such as  `any.h`, `named_any.h`, `modulelist.h`, `sequential.h` are moved into `torch/csrc/api/include/torch/nn/modules/container/`, because their implementations are too long to be combined into one file (like `torch/nn/modules/container.py` in Python API)
- `embedding.h` is not renamed to `sparse.h` yet, because we have another work stream that works on API parity for Embedding and EmbeddingBag, and renaming the file would cause conflict. After the embedding API parity work is done, we will rename `embedding.h` to  `sparse.h` to match the Python file name, and move the embedding options out to options/ folder.
- `torch/csrc/api/include/torch/nn/functional/` is added, and the folder structure mirrors that of `torch/csrc/api/include/torch/nn/modules/`. For example, `torch/csrc/api/include/torch/nn/functional/pooling.h` contains the functions for pooling, which are then used by the pooling modules in `torch/csrc/api/include/torch/nn/modules/pooling.h`.
- `torch/csrc/api/include/torch/nn/options/` is added, and the folder structure mirrors that of `torch/csrc/api/include/torch/nn/modules/`. For example, `torch/csrc/api/include/torch/nn/options/pooling.h` contains MaxPoolOptions, which is used by both MaxPool modules in `torch/csrc/api/include/torch/nn/modules/pooling.h`, and max_pool functions in `torch/csrc/api/include/torch/nn/functional/pooling.h`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26262

Differential Revision: D17422426

Pulled By: yf225

fbshipit-source-id: c413d2a374ba716dac81db31516619bbd879db7f
2019-09-17 10:07:29 -07:00

335 lines
9.9 KiB
C++

#include <gtest/gtest.h>
#include <torch/torch.h>
#include <test/cpp/api/optim_baseline.h>
#include <test/cpp/api/support.h>
#include <cmath>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <memory>
#include <random>
#include <vector>
using namespace torch::nn;
using namespace torch::optim;
template <typename OptimizerClass, typename Options>
bool test_optimizer_xor(Options options) {
torch::manual_seed(0);
Sequential model(
Linear(2, 8),
Functional(torch::sigmoid),
Linear(8, 1),
Functional(torch::sigmoid));
const int64_t kBatchSize = 4;
const int64_t kMaximumNumberOfEpochs = 3000;
OptimizerClass optimizer(model->parameters(), options);
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
auto inputs = torch::empty({kBatchSize, 2});
auto labels = torch::empty({kBatchSize});
for (size_t i = 0; i < kBatchSize; i++) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].item<int64_t>() ^ inputs[i][1].item<int64_t>();
}
inputs.set_requires_grad(true);
optimizer.zero_grad();
auto x = model->forward(inputs);
torch::Tensor loss = torch::binary_cross_entropy(x, labels);
loss.backward();
optimizer.step();
running_loss = running_loss * 0.99 + loss.item<float>() * 0.01;
if (epoch > kMaximumNumberOfEpochs) {
std::cout << "Loss is too high after epoch " << epoch << ": "
<< running_loss << std::endl;
return false;
}
epoch++;
}
return true;
}
template <typename Parameters>
void assign_parameter(
const Parameters& parameters,
const char* name,
torch::Tensor new_tensor) {
auto parameter = parameters[name];
parameter.set_requires_grad(false);
parameter.flatten().copy_(new_tensor);
parameter.set_requires_grad(true);
}
template <typename OptimizerClass, typename Options>
void check_exact_values(
Options options,
std::vector<std::vector<torch::Tensor>> expected_parameters) {
const size_t kIterations = 1001;
const size_t kSampleEvery = 100;
torch::manual_seed(0);
Sequential model(
Linear(2, 3),
Functional(torch::sigmoid),
Linear(3, 1),
Functional(torch::sigmoid));
model->to(torch::kFloat64);
// Use exact input values because matching random values is hard.
auto parameters = model->named_parameters();
assign_parameter(
parameters,
"0.weight",
torch::tensor({-0.2109, -0.4976, -0.1413, -0.3420, -0.2524, 0.6976}));
assign_parameter(
parameters, "0.bias", torch::tensor({-0.1085, -0.2979, 0.6892}));
assign_parameter(
parameters, "2.weight", torch::tensor({-0.0508, -0.3941, -0.2843}));
assign_parameter(parameters, "2.bias", torch::tensor({-0.0711}));
auto optimizer = OptimizerClass(parameters.values(), options);
torch::Tensor input =
torch::tensor({0.1, 0.2, 0.3, 0.4, 0.5, 0.6}).reshape({3, 2});
for (size_t i = 0; i < kIterations; ++i) {
optimizer.zero_grad();
auto output = model->forward(input);
auto loss = output.sum();
loss.backward();
optimizer.step();
if (i % kSampleEvery == 0) {
ASSERT_TRUE(
expected_parameters.at(i / kSampleEvery).size() == parameters.size());
for (size_t p = 0; p < parameters.size(); ++p) {
ASSERT_TRUE(parameters[p]->defined());
auto computed = parameters[p]->flatten();
auto expected = expected_parameters.at(i / kSampleEvery).at(p);
if (!computed.allclose(expected, /*rtol=*/1e-3, /*atol=*/5e-4)) {
std::cout << "Iteration " << i << ": " << computed
<< " != " << expected << " (parameter " << p << ")"
<< std::endl;
ASSERT_TRUE(false);
}
}
}
}
}
TEST(OptimTest, BasicInterface) {
struct MyOptimizer : Optimizer {
using Optimizer::Optimizer;
void step() override {}
};
std::vector<torch::Tensor> parameters = {
torch::ones({2, 3}), torch::zeros({2, 3}), torch::rand({2, 3})};
{
MyOptimizer optimizer(parameters);
ASSERT_EQ(optimizer.size(), parameters.size());
}
{
MyOptimizer optimizer;
ASSERT_EQ(optimizer.size(), 0);
optimizer.add_parameters(parameters);
ASSERT_EQ(optimizer.size(), parameters.size());
for (size_t p = 0; p < parameters.size(); ++p) {
ASSERT_TRUE(optimizer.parameters()[p].allclose(parameters[p]));
}
}
{
Linear linear(3, 4);
MyOptimizer optimizer(linear->parameters());
ASSERT_EQ(optimizer.size(), linear->parameters().size());
}
}
TEST(OptimTest, XORConvergence_SGD) {
ASSERT_TRUE(test_optimizer_xor<SGD>(
SGDOptions(0.1).momentum(0.9).nesterov(true).weight_decay(1e-6)));
}
TEST(OptimTest, XORConvergence_Adagrad) {
ASSERT_TRUE(test_optimizer_xor<Adagrad>(
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3)));
}
TEST(OptimTest, XORConvergence_RMSprop) {
ASSERT_TRUE(test_optimizer_xor<RMSprop>(RMSpropOptions(0.1).centered(true)));
}
TEST(OptimTest, XORConvergence_RMSpropWithMomentum) {
ASSERT_TRUE(test_optimizer_xor<RMSprop>(
RMSpropOptions(0.1).momentum(0.9).weight_decay(1e-6)));
}
TEST(OptimTest, XORConvergence_Adam) {
ASSERT_TRUE(test_optimizer_xor<Adam>(AdamOptions(0.1).weight_decay(1e-6)));
}
TEST(OptimTest, XORConvergence_AdamWithAmsgrad) {
ASSERT_TRUE(test_optimizer_xor<Adam>(
AdamOptions(0.1).weight_decay(1e-6).amsgrad(true)));
}
TEST(OptimTest, ProducesPyTorchValues_Adam) {
check_exact_values<Adam>(AdamOptions(1.0), expected_parameters::Adam());
}
TEST(OptimTest, ProducesPyTorchValues_AdamWithWeightDecay) {
check_exact_values<Adam>(
AdamOptions(1.0).weight_decay(1e-2),
expected_parameters::Adam_with_weight_decay());
}
TEST(OptimTest, ProducesPyTorchValues_AdamWithWeightDecayAndAMSGrad) {
check_exact_values<Adam>(
AdamOptions(1.0).weight_decay(1e-6).amsgrad(true),
expected_parameters::Adam_with_weight_decay_and_amsgrad());
}
TEST(OptimTest, ProducesPyTorchValues_Adagrad) {
check_exact_values<Adagrad>(
AdagradOptions(1.0), expected_parameters::Adagrad());
}
TEST(OptimTest, ProducesPyTorchValues_AdagradWithWeightDecay) {
check_exact_values<Adagrad>(
AdagradOptions(1.0).weight_decay(1e-2),
expected_parameters::Adagrad_with_weight_decay());
}
TEST(OptimTest, ProducesPyTorchValues_AdagradWithWeightDecayAndLRDecay) {
check_exact_values<Adagrad>(
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3),
expected_parameters::Adagrad_with_weight_decay_and_lr_decay());
}
TEST(OptimTest, ProducesPyTorchValues_RMSprop) {
check_exact_values<RMSprop>(
RMSpropOptions(0.1), expected_parameters::RMSprop());
}
TEST(OptimTest, ProducesPyTorchValues_RMSpropWithWeightDecay) {
check_exact_values<RMSprop>(
RMSpropOptions(0.1).weight_decay(1e-2),
expected_parameters::RMSprop_with_weight_decay());
}
TEST(OptimTest, ProducesPyTorchValues_RMSpropWithWeightDecayAndCentered) {
check_exact_values<RMSprop>(
RMSpropOptions(0.1).weight_decay(1e-6).centered(true),
expected_parameters::RMSprop_with_weight_decay_and_centered());
}
TEST(
OptimTest,
ProducesPyTorchValues_RMSpropWithWeightDecayAndCenteredAndMomentum) {
check_exact_values<RMSprop>(
RMSpropOptions(0.1).weight_decay(1e-6).centered(true).momentum(0.9),
expected_parameters::
RMSprop_with_weight_decay_and_centered_and_momentum());
}
TEST(OptimTest, ProducesPyTorchValues_SGD) {
check_exact_values<SGD>(SGDOptions(0.1), expected_parameters::SGD());
}
TEST(OptimTest, ProducesPyTorchValues_SGDWithWeightDecay) {
check_exact_values<SGD>(
SGDOptions(0.1).weight_decay(1e-2),
expected_parameters::SGD_with_weight_decay());
}
TEST(OptimTest, ProducesPyTorchValues_SGDWithWeightDecayAndMomentum) {
check_exact_values<SGD>(
SGDOptions(0.1).weight_decay(1e-2).momentum(0.9),
expected_parameters::SGD_with_weight_decay_and_momentum());
}
TEST(OptimTest, ProducesPyTorchValues_SGDWithWeightDecayAndNesterovMomentum) {
check_exact_values<SGD>(
SGDOptions(0.1).weight_decay(1e-6).momentum(0.9).nesterov(true),
expected_parameters::SGD_with_weight_decay_and_nesterov_momentum());
}
TEST(OptimTest, ZeroGrad) {
torch::manual_seed(0);
Linear model(2, 8);
SGD optimizer(model->parameters(), 0.1);
for (const auto& parameter : model->parameters()) {
ASSERT_FALSE(parameter.grad().defined());
}
auto output = model->forward(torch::ones({5, 2}));
auto loss = output.sum();
loss.backward();
for (const auto& parameter : model->parameters()) {
ASSERT_TRUE(parameter.grad().defined());
ASSERT_GT(parameter.grad().sum().item<float>(), 0);
}
optimizer.zero_grad();
for (const auto& parameter : model->parameters()) {
ASSERT_TRUE(parameter.grad().defined());
ASSERT_EQ(parameter.grad().sum().item<float>(), 0);
}
}
TEST(OptimTest, ExternalVectorOfParameters) {
torch::manual_seed(0);
std::vector<torch::Tensor> parameters = {
torch::randn({2, 2}), torch::randn({3, 3}), torch::randn({4, 4})};
std::vector<torch::Tensor> original_parameters = {
parameters[0].clone(), parameters[1].clone(), parameters[2].clone()};
// Set all gradients to one
for (auto& parameter : parameters) {
parameter.grad() = torch::ones_like(parameter);
}
SGD optimizer(parameters, 1.0);
optimizer.step();
ASSERT_TRUE(parameters[0].allclose(original_parameters[0] - 1.0));
ASSERT_TRUE(parameters[1].allclose(original_parameters[1] - 1.0));
ASSERT_TRUE(parameters[2].allclose(original_parameters[2] - 1.0));
}
TEST(OptimTest, AddParameter_LBFGS) {
torch::manual_seed(0);
std::vector<torch::Tensor> parameters = {torch::randn({5, 5})};
std::vector<torch::Tensor> original_parameters = {parameters[0].clone()};
// Set all gradients to one
for (auto& parameter : parameters) {
parameter.grad() = torch::ones_like(parameter);
}
LBFGS optimizer(std::vector<torch::Tensor>{}, 1.0);
optimizer.add_parameters(parameters);
optimizer.step([]() { return torch::tensor(1); });
// REQUIRE this doesn't throw
}