pytorch/torch/csrc/jit/mobile/module.cpp
Linbin Yu 4f5ea5983a [QPL] move metadata logging to markerEnd for model run QPL (#65451)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65451

This diff moved metadata logging from marker start to marker end. This should improve perf because we can skip metadata logging when mark is not sampled (using isMarkerOn)

Test Plan:
Verified metadata are logged: https://fburl.com/scuba/qpl_metrics/pytorch_employee/armjgtyw
https://fburl.com/scuba/qpl_metrics/pytorch_employee/zz36zkr1

Reviewed By: xcheng16

Differential Revision: D31105548

fbshipit-source-id: 0eafaaefecb7e230021616e397e548a2fd2b92e9
2021-09-30 22:12:40 -07:00

257 lines
7.7 KiB
C++

#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/backends/backend_exception.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/runtime/jit_exception.h>
#include <exception>
#include <ATen/record_function.h>
#include <c10/util/ScopeExit.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
std::ostream& operator<<(std::ostream& out, Instruction inst);
namespace mobile {
void CompilationUnit::register_function(std::unique_ptr<Function> fn) {
methods_.emplace_back(std::move(fn));
}
Function* CompilationUnit::find_function(const c10::QualifiedName& qn) {
for (auto& fn : methods_) {
if (fn->qualname() == qn) {
return fn.get();
}
}
return nullptr;
}
Method Module::get_method(const std::string& name) const {
if (auto method = find_method(name)) {
return *method;
}
AT_ERROR("Method '", name, "' is not defined.");
}
c10::optional<Method> Module::find_method(const std::string& basename) const {
for (auto& fn : cu_->methods()) {
if (fn->name() == basename) {
return c10::make_optional<Method>(Method(this, fn.get()));
}
}
return c10::nullopt;
}
namespace {
void set_train_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
bool on) {
if (auto slot = obj->type()->findAttributeSlot("training")) {
obj->setSlot(*slot, on);
} else {
TORCH_INTERNAL_ASSERT(false, "'training' attribute not found");
}
for (const auto& slot : obj->slots()) {
if (slot.isObject()) {
set_train_recurse(slot.toObject(), on);
}
}
}
void slot_params_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
std::vector<at::Tensor>* params) {
for (const auto& slot : obj->slots()) {
if (slot.isTensor()) {
params->emplace_back(slot.toTensor());
} else if (slot.isObject()) {
slot_params_recurse(slot.toObject(), params);
}
}
}
void slot_named_params_recurse(
const c10::intrusive_ptr<c10::ivalue::Object>& obj,
std::map<std::string, at::Tensor>* params,
const std::string& parent_name) {
auto slots = obj->slots();
size_t nslots = slots.size();
for (const auto i : c10::irange(nslots)) {
auto slot = slots[i];
std::string name =
parent_name.size() == 0 ? parent_name : parent_name + ".";
name += obj->type()->getAttributeName(i);
// TODO: Fix this filter. Requires_grad is not the appropriate
// filter of a parameter, but is a temporary hack to help probable
// users of this api. The correct behavior is to filter by the
// obj->type->is_parameter() but this currently always returns
// false on mobile.
if (slot.isTensor() && slot.toTensor().requires_grad()) {
(*params)[name] = slot.toTensor();
} else if (slot.isObject()) {
slot_named_params_recurse(slot.toObject(), params, name);
}
}
}
std::string getTopModuleTypeName(const Module& m) {
std::string name;
if (m._ivalue()->type() && m._ivalue()->type()->name()) {
name = m._ivalue()->type()->name().value().name();
}
return name;
}
} // namespace
const std::vector<at::Tensor> Module::parameters() const {
std::vector<at::Tensor> params;
slot_params_recurse(object_, &params);
return params;
}
// Returns a mapping for all attributes that requires_grad=True in a module.
// This behavior differs from full torch script modules. This is a bug,
// but currently there is no way to correctly label parameters in the
// loading of a mobile module. TODO
const std::map<std::string, at::Tensor> Module::named_parameters() const {
std::map<std::string, at::Tensor> params;
const std::string name = "";
slot_named_params_recurse(object_, &params, name);
return params;
}
std::string Module::getModuleHierarchy(const int64_t debug_handle) const {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getModuleHierarchyInfo(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
std::string Module::getCallStack(const int64_t debug_handle) const {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getSourceDebugString(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
// We will continue to support this API for now as this is being relied upon
// for profiling.
// We really need to change this part, so in the next step for profiling support
// for delegates, the first thing will be to rewrite how profiling is done
// for lite interpreter.
std::string Module::get_forward_method_debug_info(int64_t debug_handle) const {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
return getDebugTable().getModuleHierarchyInfo(
debug_handle, getTopModuleTypeName(*this));
#else
return "";
#endif
}
void Module::train(bool on) {
set_train_recurse(object_, on);
}
bool Module::is_training() const {
if (auto slot = object_->type()->findAttributeSlot("training")) {
return object_->getSlot(*slot).toBool();
}
return true;
}
const std::vector<Method> Module::get_methods() const {
std::vector<Method> methods;
for (std::unique_ptr<Function>& fn : cu_->methods()) {
methods.emplace_back(this, fn.get());
}
return methods;
}
Method::Method(const Module* owner, Function* function)
: owner_(owner), function_(function) {}
void Method::run(Stack& stack) const {
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
/* if the metadata dict doesn't contain "model_name", copy the metadata and
set the value of "model_name" as name() */
std::unordered_map<std::string, std::string> copied_metadata =
owner_->getMetadata();
if (observer) {
observer->onEnterRunMethod(instance_key);
}
auto debug_info = std::make_shared<MobileDebugInfo>();
std::string name = copied_metadata["model_name"];
debug_info->setModelName(name);
debug_info->setMethodName(function_->name());
at::DebugInfoGuard guard(at::DebugInfoKind::MOBILE_RUNTIME_INFO, debug_info);
std::string error_message;
auto failure_guard = c10::make_scope_exit([&]() {
if (!observer) {
return;
}
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
if (error_message.empty()) {
error_message = owner_->getDebugTable().getSourceDebugString(
function_->getExceptionDebugHandle(), getTopModuleTypeName(*owner_));
}
#endif
observer->onFailRunMethod(
copied_metadata,
function_->name(),
instance_key,
error_message.empty() ? "Unknown exception" : error_message.c_str());
});
try {
stack.insert(stack.begin(), owner_->_ivalue()); // self
function_->run(stack);
if (observer) {
observer->onExitRunMethod(
copied_metadata, function_->name(), instance_key);
}
failure_guard.release();
// This exception must be caught first as it derived from c10::Error
} catch (c10::BackendRuntimeException& e) {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
e.pushDebugHandle(function_->getExceptionDebugHandle());
// symbolicate all handles
auto debug_string = owner_->getDebugTable().getSourceDebugString(
e.getDebugHandles(), getTopModuleTypeName(*owner_));
e.add_context(debug_string);
#endif
error_message = e.what();
TORCH_RETHROW(e);
} catch (c10::Error& error) {
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
auto debug_string = owner_->getDebugTable().getSourceDebugString(
function_->getExceptionDebugHandle(), getTopModuleTypeName(*owner_));
error.add_context(debug_string);
#endif
error_message = error.what();
TORCH_RETHROW(error);
}
}
c10::IValue Method::operator()(std::vector<c10::IValue> stack) const {
run(stack);
TORCH_INTERNAL_ASSERT(!stack.empty());
return stack.front();
}
} // namespace mobile
} // namespace jit
} // namespace torch