mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Avoid exposing defines that conflict with google logging, since this blocks external usage of libtorch in certain cases. All the 'interesting' changes should be in these two files, and the rest should just be mechanical changes via sed. c10/util/logging_is_not_google_glog.h c10/util/logging_is_google_glog.h Fixes https://github.com/pytorch/pytorch/issues/81415 cc @miladm @malfet Pull Request resolved: https://github.com/pytorch/pytorch/pull/82032 Approved by: https://github.com/soumith, https://github.com/miladm
345 lines
11 KiB
C++
345 lines
11 KiB
C++
#ifndef CAFFE2_CORE_CONTEXT_GPU_H_
|
|
#define CAFFE2_CORE_CONTEXT_GPU_H_
|
|
|
|
#include <ctime>
|
|
#include <mutex>
|
|
|
|
#include "caffe2/core/common.h"
|
|
#include "caffe2/core/common_gpu.h"
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/context_base.h"
|
|
#include "caffe2/core/logging.h"
|
|
#include "caffe2/core/numa.h"
|
|
#include "caffe2/core/tensor.h"
|
|
#include "caffe2/core/types.h"
|
|
#include "caffe2/proto/caffe2_pb.h"
|
|
|
|
// Since we are using the macro CAFFE2_USE_CUDNN, we will need to include this
|
|
// file after common.h is included.
|
|
#ifdef CAFFE2_USE_CUDNN
|
|
#include "caffe2/core/common_cudnn.h"
|
|
#endif // CAFFE2_USE_CUDNN
|
|
|
|
#include <c10/core/Device.h>
|
|
#include <c10/core/Stream.h>
|
|
#include <c10/cuda/CUDAStream.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
|
|
namespace caffe2 {
|
|
|
|
enum class CudaMemoryPoolType {
|
|
NONE = 0,
|
|
CUB = 1,
|
|
THC = 2,
|
|
};
|
|
|
|
/**
|
|
* Gets the current memory pool type used by Caffe2.
|
|
*
|
|
* The memory pool is set up during caffe2's global initialization time.
|
|
*/
|
|
CAFFE2_CUDA_API CudaMemoryPoolType GetCudaMemoryPoolType();
|
|
|
|
/**
|
|
* A struct to host thread-local cuda objects.
|
|
*
|
|
* In Caffe2, each thread has its own non-default cuda stream as well as
|
|
* related objects such as cublas and curand handles. This is achieved by
|
|
* having the ThreadLocalCUDAObjects wrapper that takes care of allocating
|
|
* and deallocating these objects at the thread scope. This class is solely
|
|
* used inside CUDAContext and should not be used externally.
|
|
*
|
|
* This class manages the mapping from logical stream ID (int stream_id
|
|
* passed around in Caffe2) and CUDAStream objects. We intend to eventually
|
|
* deprecate the logical stream ID interface, but not for now.
|
|
*/
|
|
class CAFFE2_CUDA_API ThreadLocalCUDAObjects {
|
|
friend class CUDAContext;
|
|
|
|
private:
|
|
ThreadLocalCUDAObjects() {
|
|
for (DeviceIndex i = 0; i < C10_COMPILE_TIME_MAX_GPUS; ++i) {
|
|
cuda_streams_[i] = vector<c10::cuda::CUDAStream>();
|
|
}
|
|
}
|
|
|
|
// Record current stream id for the current thread.
|
|
// This is the new API we're trying to migrate use cases to and get rid of
|
|
// explicit stream id passing. For now it's invoked in
|
|
// CUDAContext::SwitchToDevice
|
|
void SetCurrentStreamId(DeviceIndex gpu, StreamId stream_id) {
|
|
// TODO: use current device id from thread local instead of passing gpu in
|
|
if (stream_id != -1) {
|
|
c10::cuda::setCurrentCUDAStream(GetCUDAStream(gpu, stream_id));
|
|
}
|
|
}
|
|
|
|
// Retrieves the CUDAStream corresponding to a logical stream ID, ensuring
|
|
// that it exists in cuda_streams_ if it has not been allocated yet.
|
|
c10::cuda::CUDAStream GetCUDAStream(DeviceIndex gpu, StreamId stream_id) {
|
|
vector<c10::cuda::CUDAStream>& gpu_streams = cuda_streams_[gpu];
|
|
while (gpu_streams.size() <= static_cast<size_t>(stream_id)) {
|
|
// NB: This streams are not guaranteed to be unique; we'll
|
|
// wrap around once we run out of streams in the pool.
|
|
gpu_streams.emplace_back(c10::cuda::getStreamFromPool(/* high priority */ false, gpu));
|
|
}
|
|
return gpu_streams[stream_id];
|
|
}
|
|
|
|
// Uses the logical stream id from the thread local to pick the stream
|
|
// We're going to migrate all usages to this case API instead of passing the
|
|
// stream id directly
|
|
cudaStream_t GetStream(DeviceIndex gpu) {
|
|
return c10::cuda::getCurrentCUDAStream(gpu).stream();
|
|
}
|
|
|
|
cudaStream_t GetStream(DeviceIndex gpu, StreamId stream_id) {
|
|
return GetCUDAStream(gpu, stream_id).stream();
|
|
}
|
|
|
|
// Uses the logical stream id from the thread local to pick the stream
|
|
// We're going to migrate all usages to this case API instead of passing the
|
|
// stream id directly
|
|
cublasHandle_t GetHandle(DeviceIndex gpu) {
|
|
return GetHandle(c10::cuda::getCurrentCUDAStream(gpu));
|
|
}
|
|
|
|
cublasHandle_t GetHandle(c10::cuda::CUDAStream cuda_stream) {
|
|
CUDAGuard guard(cuda_stream.device_index());
|
|
// Default construct in the map if it doesn't exist, and return a mutable
|
|
// reference to it.
|
|
auto& r = cublas_handles_[cuda_stream];
|
|
if (r == nullptr) {
|
|
CUBLAS_ENFORCE(cublasCreate(&r));
|
|
// The default is CUBLAS_POINTER_MODE_HOST. You can override
|
|
// it after obtaining the cublas handle, but do that with
|
|
// caution.
|
|
CUBLAS_ENFORCE(cublasSetPointerMode(r, CUBLAS_POINTER_MODE_HOST));
|
|
CUBLAS_ENFORCE(cublasSetStream(r, cuda_stream));
|
|
}
|
|
return r;
|
|
}
|
|
|
|
#ifdef CAFFE2_USE_CUDNN
|
|
// Uses the logical stream id from the thread local to pick the stream
|
|
// We're going to migrate all usages to this case API instead of passing the
|
|
// stream id directly
|
|
cudnnHandle_t GetCudnnHandle(DeviceIndex gpu) {
|
|
return GetCudnnHandle(c10::cuda::getCurrentCUDAStream(gpu));
|
|
}
|
|
|
|
cudnnHandle_t GetCudnnHandle(c10::cuda::CUDAStream cuda_stream) {
|
|
CUDAGuard guard(cuda_stream.device_index());
|
|
auto& r = cudnn_handles_[cuda_stream];
|
|
if (r == nullptr) {
|
|
CUDNN_ENFORCE(cudnnCreate(&r));
|
|
CUDNN_ENFORCE(cudnnSetStream(r, cuda_stream));
|
|
}
|
|
return r;
|
|
}
|
|
#endif // CAFFE2_USE_CUDNN
|
|
|
|
~ThreadLocalCUDAObjects() noexcept {
|
|
for (auto element : cublas_handles_) {
|
|
if (element.second) {
|
|
CUBLAS_CHECK(cublasDestroy(element.second));
|
|
}
|
|
}
|
|
#ifdef CAFFE2_USE_CUDNN
|
|
for (auto element : cudnn_handles_) {
|
|
if (element.second) {
|
|
CUDNN_CHECK(cudnnDestroy(element.second));
|
|
}
|
|
}
|
|
#endif // CAFFE2_USE_CUDNN
|
|
}
|
|
// WARNING: mapping from logical stream ID to c10::cuda::CUDAStream
|
|
// is NOT bijective; multiple logical stream IDs may map to the
|
|
// same underlying stream ID.
|
|
vector<c10::cuda::CUDAStream> cuda_streams_[C10_COMPILE_TIME_MAX_GPUS];
|
|
std::unordered_map<c10::cuda::CUDAStream, cublasHandle_t> cublas_handles_;
|
|
#ifdef CAFFE2_USE_CUDNN
|
|
std::unordered_map<c10::cuda::CUDAStream, cudnnHandle_t> cudnn_handles_;
|
|
#endif // CAFFE2_USE_CUDNN
|
|
};
|
|
|
|
class CAFFE2_CUDA_API CUDAContext final : public BaseContext {
|
|
public:
|
|
// The default cuda context constructor.
|
|
explicit CUDAContext(DeviceIndex gpu_id = -1);
|
|
explicit CUDAContext(const DeviceOption& option);
|
|
explicit CUDAContext(Device device)
|
|
: CUDAContext(DeviceToOption(device)) {}
|
|
|
|
~CUDAContext() override;
|
|
|
|
inline void SwitchToDevice(StreamId stream_id) override {
|
|
getCudaObjects().SetCurrentStreamId(gpu_id_, stream_id);
|
|
CaffeCudaSetDevice(gpu_id_);
|
|
}
|
|
|
|
// void SwitchToDevice()
|
|
using BaseContext::SwitchToDevice;
|
|
|
|
inline void WaitEvent(const Event& ev) override {
|
|
ev.Wait(CUDA, this);
|
|
}
|
|
|
|
inline void Record(Event* ev, const char* err_msg = nullptr) const override {
|
|
CAFFE_ENFORCE(ev, "Event must not be null.");
|
|
ev->Record(CUDA, this, err_msg);
|
|
}
|
|
|
|
// Note on current use cases:
|
|
// FinishDeviceComputation must be called on the same cpu thread as
|
|
// SwitchToDevice()
|
|
void FinishDeviceComputation() override {
|
|
CUDA_ENFORCE(cudaStreamSynchronize(getCudaObjects().GetStream(gpu_id_)));
|
|
cudaError_t error = cudaGetLastError();
|
|
if (error != cudaSuccess) {
|
|
CAFFE_THROW("Encountered CUDA error: ", cudaGetErrorString(error));
|
|
}
|
|
}
|
|
|
|
inline int device_id() const {
|
|
return gpu_id_;
|
|
}
|
|
|
|
inline cudaStream_t cuda_stream() const {
|
|
return getCudaObjects().GetStream(gpu_id_);
|
|
}
|
|
|
|
static cudaStream_t cuda_stream(DeviceIndex gpu_id, StreamId stream_id) {
|
|
return getCudaObjects().GetStream(gpu_id, stream_id);
|
|
}
|
|
|
|
cublasHandle_t cublas_handle() {
|
|
return getCudaObjects().GetHandle(gpu_id_);
|
|
}
|
|
|
|
#ifdef CAFFE2_USE_CUDNN
|
|
cudnnHandle_t cudnn_handle() {
|
|
return getCudaObjects().GetCudnnHandle(gpu_id_);
|
|
}
|
|
#endif // CAFFE2_USE_CUDNN
|
|
|
|
curandGenerator_t& curand_generator() {
|
|
if (!curand_generator_) {
|
|
CUDAGuard guard(gpu_id_);
|
|
CURAND_ENFORCE(
|
|
curandCreateGenerator(&curand_generator_, CURAND_RNG_PSEUDO_DEFAULT));
|
|
CURAND_ENFORCE(
|
|
curandSetPseudoRandomGeneratorSeed(curand_generator_, random_seed_));
|
|
TORCH_CHECK_NOTNULL(curand_generator_);
|
|
}
|
|
CURAND_ENFORCE(curandSetStream(curand_generator_, cuda_stream()));
|
|
return curand_generator_;
|
|
}
|
|
|
|
inline static at::DataPtr New(size_t nbytes) {
|
|
return GetAllocator(CUDA)->allocate(nbytes);
|
|
}
|
|
|
|
// Get a mutex to lock out cudaMalloc / cudaFree calls when
|
|
// NCCL kernels are being launched. Should remove threat of
|
|
// deadlocks
|
|
static std::mutex& mutex();
|
|
|
|
// Functions to query memory stats. Only available if flag
|
|
// --caffe2_gpu_memory_tracking is enabled.
|
|
static std::vector<long> TotalMemoryByGpu();
|
|
static std::vector<long> MaxMemoryByGpu();
|
|
|
|
template <class SrcContext, class DstContext>
|
|
inline void CopyBytes(size_t nbytes, const void* src, void* dst) {
|
|
CUDA_ENFORCE(cudaMemcpyAsync(
|
|
dst,
|
|
src,
|
|
nbytes,
|
|
cudaMemcpyDefault,
|
|
getCudaObjects().GetStream(gpu_id_)));
|
|
}
|
|
|
|
void CopyBytesSameDevice(size_t nbytes, const void* src, void* dst) override {
|
|
CopyBytes<CUDAContext, CUDAContext>(nbytes, src, dst);
|
|
}
|
|
|
|
void CopyBytesToCPU(size_t nbytes, const void* src, void* dst) override {
|
|
CopyBytes<CUDAContext, CPUContext>(nbytes, src, dst);
|
|
}
|
|
|
|
void CopyBytesFromCPU(size_t nbytes, const void* src, void* dst) override {
|
|
CopyBytes<CPUContext, CUDAContext>(nbytes, src, dst);
|
|
}
|
|
|
|
template <typename T, class SrcContext, class DstContext>
|
|
inline void Copy(int n, const T* src, T* dst) {
|
|
CopyBytes<SrcContext, DstContext>(n * sizeof(T),
|
|
static_cast<const void*>(src),
|
|
static_cast<void*>(dst));
|
|
}
|
|
|
|
template <class SrcContext, class DstContext>
|
|
inline void
|
|
CopyItems(const TypeMeta meta, size_t n, const void* src, void* dst) {
|
|
CAFFE_ENFORCE(!meta.copy(), "CUDAContext requires fundamental types.");
|
|
CopyBytes<SrcContext, DstContext>(n * meta.itemsize(), src, dst);
|
|
}
|
|
|
|
static void CopyBytesAsync(
|
|
size_t nbytes,
|
|
const void* src,
|
|
Device src_device,
|
|
void* dst,
|
|
Device dst_device);
|
|
static void CopyBytesSync(
|
|
size_t nbytes,
|
|
const void* src,
|
|
Device src_device,
|
|
void* dst,
|
|
Device dst_device);
|
|
|
|
// By default CUDA operators have async device parts
|
|
static bool HasAsyncPartDefault() {
|
|
return true;
|
|
}
|
|
|
|
static bool SupportsAsyncScheduling() {
|
|
return true;
|
|
}
|
|
|
|
static bool IsStreamFree(const DeviceOption& option, StreamId stream_id) {
|
|
auto stream = CUDAContext::cuda_stream(option.device_id(), stream_id);
|
|
auto status = cudaStreamQuery(stream);
|
|
if (status == cudaErrorNotReady) {
|
|
// ignore and clear the error if not ready
|
|
(void)cudaGetLastError();
|
|
}
|
|
return status == cudaSuccess;
|
|
}
|
|
|
|
at::Device device() const override {
|
|
return at::Device(CUDA, gpu_id_);
|
|
}
|
|
|
|
DeviceType device_type() const override {
|
|
return CUDA;
|
|
}
|
|
|
|
static constexpr DeviceType GetDeviceType() {
|
|
return CUDA;
|
|
}
|
|
|
|
protected:
|
|
int gpu_id_;
|
|
int random_seed_;
|
|
curandGenerator_t curand_generator_{nullptr};
|
|
static ThreadLocalCUDAObjects& getCudaObjects();
|
|
};
|
|
|
|
using TensorCUDA = Tensor;
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_CORE_CONTEXT_GPU_H_
|