mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36494 Make name consistent with op. Since we have batch_norm2d and batch_norm3d ops Test Plan: python test/quantization/test_quantized.py test_batch_norm2d Imported from OSS Differential Revision: D21008831 fbshipit-source-id: f81ca71a331d5620fd6a3f6175020a30f2e2566b
129 lines
5.1 KiB
Python
129 lines
5.1 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import torch
|
|
import torch.nn.quantized.functional
|
|
import torch.nn.intrinsic as nni
|
|
|
|
class BatchNorm2d(torch.nn.BatchNorm2d):
|
|
r"""Applies Quantized Batch Normalization over a 4D input (a mini-batch of 2D inputs
|
|
with additional channel dimension) as described in the paper
|
|
`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`_ .
|
|
|
|
.. math::
|
|
|
|
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
|
|
|
Because the Batch Normalization is done over the `C` dimension, computing statistics
|
|
on `(N, H, W)` slices, it's common terminology to call this Spatial Batch Normalization.
|
|
|
|
Args:
|
|
num_features: :math:`C` from an expected input of size
|
|
:math:`(N, C, H, W)`
|
|
eps: a value added to the denominator for numerical stability.
|
|
Default: 1e-5
|
|
momentum: the value used for the running_mean and running_var
|
|
computation. Can be set to ``None`` for cumulative moving average
|
|
(i.e. simple average). Default: 0.1
|
|
|
|
Shape:
|
|
- Input: :math:`(N, C, H, W)`
|
|
- Output: :math:`(N, C, H, W)` (same shape as input)
|
|
|
|
Examples:
|
|
|
|
>>> m = nn.quantized.BatchNorm2d(100)
|
|
>>> input = torch.randn(20, 100, 35, 45)
|
|
>>> quantized_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1):
|
|
super(BatchNorm2d, self).__init__(num_features)
|
|
self.eps = eps
|
|
self.scale = 1.0
|
|
self.zero_point = 0
|
|
|
|
def forward(self, input):
|
|
return torch.ops.quantized.batch_norm2d(input, self.weight, self.bias, self.running_mean,
|
|
self.running_var, self.eps, self.scale, self.zero_point)
|
|
|
|
def _get_name(self):
|
|
return 'QuantizedBatchNorm2d'
|
|
|
|
@classmethod
|
|
def from_float(cls, mod):
|
|
if type(mod) == nni.BNReLU2d:
|
|
activation_post_process = mod[1].activation_post_process
|
|
mod = mod[0]
|
|
else:
|
|
activation_post_process = mod.activation_post_process
|
|
scale, zero_point = mod.activation_post_process.calculate_qparams()
|
|
new_mod = cls(mod.num_features, mod.eps)
|
|
new_mod.weight = mod.weight
|
|
new_mod.bias = mod.bias
|
|
new_mod.running_mean = mod.running_mean
|
|
new_mod.running_var = mod.running_var
|
|
new_mod.scale = float(scale)
|
|
new_mod.zero_point = int(zero_point)
|
|
return new_mod
|
|
|
|
class BatchNorm3d(torch.nn.BatchNorm3d):
|
|
r"""Applies Quantized Batch Normalization over a 5D input (a mini-batch of 3D inputs
|
|
with additional channel dimension) as described in the paper
|
|
`Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift`_ .
|
|
.. math::
|
|
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
|
Because the Batch Normalization is done over the `C` dimension, computing statistics
|
|
on `(N, D, H, W)` slices, it's common terminology to call this Spatial Batch Normalization.
|
|
Args:
|
|
num_features: :math:`C` from an expected input of size
|
|
:math:`(N, C, D, H, W)`
|
|
eps: a value added to the denominator for numerical stability.
|
|
Default: 1e-5
|
|
momentum: the value used for the running_mean and running_var
|
|
computation. Can be set to ``None`` for cumulative moving average
|
|
(i.e. simple average). Default: 0.1
|
|
Shape:
|
|
- Input: :math:`(N, C, D, H, W)`
|
|
- Output: :math:`(N, C, D, H, W)` (same shape as input)
|
|
Examples:
|
|
>>> m = nn.quantized.BatchNorm3d(100)
|
|
>>> input = torch.randn(20, 100, 25, 35, 45)
|
|
>>> quantized_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
|
|
>>> output = m(input)
|
|
"""
|
|
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1):
|
|
super(BatchNorm3d, self).__init__(num_features)
|
|
self.eps = eps
|
|
self.scale = 1.0
|
|
self.zero_point = 0
|
|
|
|
def forward(self, input):
|
|
return torch.ops.quantized.batch_norm3d(input, self.weight, self.bias, self.running_mean,
|
|
self.running_var, self.eps, self.scale, self.zero_point)
|
|
|
|
def _get_name(self):
|
|
return 'QuantizedBatchNorm3d'
|
|
|
|
@classmethod
|
|
def from_float(cls, mod):
|
|
if type(mod) == nni.BNReLU3d:
|
|
activation_post_process = mod[1].activation_post_process
|
|
mod = mod[0]
|
|
else:
|
|
activation_post_process = mod.activation_post_process
|
|
|
|
scale, zero_point = activation_post_process.calculate_qparams()
|
|
new_mod = cls(mod.num_features, mod.eps)
|
|
new_mod.weight = mod.weight
|
|
new_mod.bias = mod.bias
|
|
new_mod.running_mean = mod.running_mean
|
|
new_mod.running_var = mod.running_var
|
|
new_mod.scale = float(scale)
|
|
new_mod.zero_point = int(zero_point)
|
|
return new_mod
|