pytorch/torch/_dynamo/metrics_context.py
Prajesh Praveen Anchalia 4e34fbdcbc Add inductor_fx_graph_cache stats to dynamo_utils (#141190)
Summary:
Add the following inductor fx graph cache stats to dynamo compile

- inductor_fx_cache_hit_count
- inductor_fx_cache_miss_count
- inductor_fx_cache_backend_type
- inductor_fx_cache_hit_keys
- inductor_fx_cache_miss_keys
- remote_cache_version

Test Plan: Run local tests and staging logger: P1683061460

Differential Revision: D66232206

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141190
Approved by: https://github.com/masnesral
2024-11-21 20:59:10 +00:00

106 lines
3.5 KiB
Python

from typing import Any, Callable, Dict, Optional, Type
from typing_extensions import TypeAlias
OnExitType: TypeAlias = Callable[[Dict[str, Any]], None]
class MetricsContext:
def __init__(self, on_exit: OnExitType):
"""
Use this class as a contextmanager to create a context under which to accumulate
a set of metrics, e.g., metrics gathered during a compilation. On exit of the
contextmanager, call the provided 'on_exit' function and pass a dictionary of
all metrics set during the lifetime of the contextmanager.
"""
self._on_exit = on_exit
self._metrics: Dict[str, Any] = {}
self._level = 0
def __enter__(self) -> "MetricsContext":
"""
Initialize metrics recording.
"""
if self._level == 0:
# In case of recursion, track at the outermost context.
self._metrics = {}
self._level += 1
return self
def __exit__(
self,
exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
_traceback: Any,
) -> None:
"""
At exit, call the provided on_exit function.
"""
self._level -= 1
assert self._level >= 0
if self._level == 0:
self._on_exit(self._metrics)
def in_progress(self) -> bool:
"""
True if we've entered the context.
"""
return self._level > 0
def increment(self, metric: str, value: int) -> None:
"""
Increment a metric by a given amount.
"""
if self._level == 0:
raise RuntimeError(f"Cannot increment {metric} outside of a MetricsContext")
if metric not in self._metrics:
self._metrics[metric] = 0
self._metrics[metric] += value
def set(self, metric: str, value: Any) -> None:
"""
Set a metric to a given value. Raises if the metric has been assigned previously
in the current context.
"""
if self._level == 0:
raise RuntimeError(f"Cannot set {metric} outside of a MetricsContext")
if metric in self._metrics:
raise RuntimeError(
f"Metric '{metric}' has already been set in the current context"
)
self._metrics[metric] = value
def update(self, values: Dict[str, Any]) -> None:
"""
Set multiple metrics directly. This method does NOT increment. Raises if any
metric has been assigned previously in the current context.
"""
if self._level == 0:
raise RuntimeError("Cannot update metrics outside of a MetricsContext")
existing = self._metrics.keys() & values.keys()
if existing:
raise RuntimeError(
f"Metric(s) {existing} have already been set in the current context"
)
self._metrics.update(values)
def update_outer(self, values: Dict[str, Any]) -> None:
"""
Update, but only when at the outermost context.
"""
if self._level == 0:
raise RuntimeError("Cannot update metrics outside of a MetricsContext")
if self._level == 1:
self.update(values)
def add_to_set(self, metric: str, value: Any) -> None:
"""
Records a metric as a set() of values.
"""
if self._level == 0:
raise RuntimeError(f"Cannot add {metric} outside of a MetricsContext")
if metric not in self._metrics:
self._metrics[metric] = set()
self._metrics[metric].add(value)