mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29299
This reverts commit 9c43b16df9, but also
with the changes from D18348622. Comments there:
thpp-compatibility is used by admarket/adreview/service:adreviewservice and
libtorch is too big for the service to deal with.
thpp-compatibility doesn't support autograd, so we hack around dispatching
variables by using AutoNonVariableTypeMode everywhere we call into ATen,
so we never attempt to call into Variable stubs. If you get it wrong,
you'll get an error like:
```
what(): Could not run 'aten::empty' with arguments from the 'VariableTensorId' backend. 'aten::empty' is only available for these backends: [SparseCPUTensorId, CPUTensorId, MkldnnCPUTensorId]. (lookup_ at caffe2/aten/src/ATen/core/dispatch/DispatchTable.h:298)
```
Test Plan:
Imported from OSS
```
buck test //thpp-compatibility/...
buck build mode/opt-clang admarket/adreview/service:adreviewservice
```
adreviewservice canary: https://our.intern.facebook.com/intern/ads/canary/422290029716387895 (comparing against parent comment due to current breakage) ==> experiment store https://our.intern.facebook.com/intern/experiment_store/experiment/43990006/
adfinder canary: https://our.intern.facebook.com/intern/ads/canary/422268535840333934
adindexer canary: https://our.intern.facebook.com/intern/ads/canary/422268550559034675
adreview second canary: https://our.intern.facebook.com/intern/ads/canary/422307863515591925
canary without thpp-compat fixups https://our.intern.facebook.com/intern/ads/canary/422308951649168772
Reviewed By: dreiss
Differential Revision: D18353504
Pulled By: ezyang
fbshipit-source-id: 65feaba39fa07bb66762810909aeb38868668a30
689 lines
29 KiB
C++
689 lines
29 KiB
C++
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/tensor_new.h>
|
|
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Size.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/utils/auto_gil.h>
|
|
#include <torch/csrc/utils/cuda_lazy_init.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
#include <torch/csrc/utils/python_arg_parser.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_scalars.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/tensor_numpy.h>
|
|
#include <torch/csrc/autograd/generated/variable_factories.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/InitialTensorOptions.h>
|
|
#include <ATen/NamedTensorUtils.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/Optional.h>
|
|
#include <ATen/core/EnableNamedTensor.h>
|
|
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
using at::Backend;
|
|
using at::Device;
|
|
using at::DeviceType;
|
|
using at::IntArrayRef;
|
|
using at::kCPU;
|
|
using at::kCUDA;
|
|
using at::kLong;
|
|
using at::Scalar;
|
|
using at::ScalarType;
|
|
using at::Storage;
|
|
using at::Tensor;
|
|
using at::TensorOptions;
|
|
using at::Type;
|
|
using c10::optional;
|
|
|
|
namespace torch { namespace utils {
|
|
namespace {
|
|
const int MAX_DIMS = 128;
|
|
|
|
Backend backendToBackendOfDeviceType(Backend b, DeviceType d) {
|
|
switch (d) {
|
|
case DeviceType::CPU:
|
|
return backendToCPU(b);
|
|
case DeviceType::CUDA:
|
|
return backendToCUDA(b);
|
|
case DeviceType::HIP:
|
|
return backendToHIP(b);
|
|
case DeviceType::MSNPU:
|
|
TORCH_CHECK(!isSparse(b), "Sparse not implemented for MSNPU");
|
|
return Backend::MSNPU;
|
|
case DeviceType::XLA:
|
|
TORCH_CHECK(!isSparse(b), "Sparse not implemented for XLA");
|
|
return Backend::XLA;
|
|
default:
|
|
AT_ERROR("Unknown device type");
|
|
}
|
|
}
|
|
|
|
TensorOptions options(c10::TensorTypeId type_id, at::ScalarType scalar_type, const c10::optional<Device>& device=c10::nullopt) {
|
|
auto options = TensorOptions(scalar_type)
|
|
.device(computeDeviceType(type_id))
|
|
.layout(layout_from_backend(tensorTypeIdToBackend(type_id)));
|
|
if (device.has_value()) {
|
|
return options.device(device);
|
|
}
|
|
return options;
|
|
}
|
|
|
|
void maybe_initialize_cuda(c10::TensorTypeId type_id) {
|
|
if (backendToDeviceType(tensorTypeIdToBackend(type_id)) == kCUDA) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
}
|
|
|
|
void maybe_initialize_cuda(const Device device) {
|
|
if (device.is_cuda()) {
|
|
torch::utils::cuda_lazy_init();
|
|
}
|
|
}
|
|
|
|
Tensor dispatch_zeros(c10::TensorTypeId type_id, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(type_id);
|
|
AutoNoGIL no_gil;
|
|
return torch::zeros(sizes, options(type_id, scalar_type, device));
|
|
}
|
|
|
|
Tensor dispatch_ones(c10::TensorTypeId type_id, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(type_id);
|
|
AutoNoGIL no_gil;
|
|
return torch::ones(sizes, options(type_id, scalar_type, device));
|
|
}
|
|
|
|
Tensor dispatch_full(c10::TensorTypeId type_id, at::ScalarType scalar_type, Scalar fill_value, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(type_id);
|
|
AutoNoGIL no_gil;
|
|
return torch::full(sizes, fill_value, options(type_id, scalar_type, device));
|
|
}
|
|
|
|
Tensor new_with_sizes(c10::TensorTypeId type_id, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) {
|
|
maybe_initialize_cuda(type_id);
|
|
AutoNoGIL no_gil;
|
|
return torch::empty(sizes, options(type_id, scalar_type, device));
|
|
}
|
|
|
|
Tensor new_with_storage(c10::TensorTypeId type_id, at::ScalarType scalar_type, Storage storage) {
|
|
auto tensor = at::empty({}, options(type_id, scalar_type));
|
|
tensor.set_(std::move(storage));
|
|
return tensor;
|
|
}
|
|
|
|
Tensor new_with_tensor(c10::TensorTypeId type_id, at::ScalarType scalar_type, const Tensor& other) {
|
|
if (legacyExtractTypeId(other.type_set()) != type_id) {
|
|
// In temporary expression lifetime we trust
|
|
throw TypeError("expected %s (got %s)", type_id, toString(other.type_set()).c_str());
|
|
}
|
|
if (other.scalar_type() != scalar_type) {
|
|
throw TypeError("expected %s (got %s)", toString(scalar_type), toString(other.scalar_type()));
|
|
}
|
|
return other.slice();
|
|
}
|
|
|
|
std::vector<int64_t> compute_sizes(PyObject* seq) {
|
|
std::vector<int64_t> sizes;
|
|
THPObjectPtr handle;
|
|
while (PySequence_Check(seq)) {
|
|
auto length = PySequence_Length(seq);
|
|
if (length < 0) throw python_error();
|
|
sizes.push_back(length);
|
|
if (sizes.size() > MAX_DIMS) {
|
|
throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name);
|
|
}
|
|
if (length == 0) break;
|
|
handle = THPObjectPtr(PySequence_GetItem(seq, 0));
|
|
if (!handle) {
|
|
throw ValueError("could not determine the shape of object type '%s'", Py_TYPE(seq)->tp_name);
|
|
}
|
|
seq = handle.get();
|
|
}
|
|
|
|
return sizes;
|
|
}
|
|
|
|
ScalarType infer_scalar_type(PyObject *obj) {
|
|
if (PyFloat_Check(obj)) {
|
|
// this is always guaranteed to be a floating-point type, and makes it more
|
|
// convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype).
|
|
return torch::tensors::get_default_scalar_type();
|
|
}
|
|
if (THPUtils_checkLong(obj)) {
|
|
return ScalarType::Long;
|
|
}
|
|
if (PyBool_Check(obj)) {
|
|
return ScalarType::Bool;
|
|
}
|
|
if (THPVariable_Check(obj)) {
|
|
auto var = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
return var.scalar_type();
|
|
}
|
|
#ifdef USE_NUMPY
|
|
if (PyArray_Check(obj)) {
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)obj));
|
|
}
|
|
if (PyArray_CheckScalar(obj)) {
|
|
THPObjectPtr arr(PyArray_FromScalar(obj, nullptr));
|
|
return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*) arr.get()));
|
|
}
|
|
#endif
|
|
if (THPUtils_checkString(obj)) {
|
|
throw TypeError("new(): invalid data type '%s'", Py_TYPE(obj)->tp_name);
|
|
}
|
|
if (PySequence_Check(obj)) {
|
|
c10::optional<ScalarType> scalarType;
|
|
auto length = PySequence_Length(obj);
|
|
if (length < 0) throw python_error();
|
|
// match NumPy semantics, except use default tensor type instead of double.
|
|
if (length == 0) return torch::tensors::get_default_scalar_type();
|
|
for (int i = 0; i < length; ++i) {
|
|
THPObjectPtr handle(PySequence_GetItem(obj, i));
|
|
if (!handle) throw python_error();
|
|
auto cur_item = handle.get();
|
|
if (cur_item == obj) throw TypeError("new(): self-referential lists are incompatible");
|
|
ScalarType item_scalarType = infer_scalar_type(cur_item);
|
|
scalarType = (scalarType) ?
|
|
at::promoteTypes(*scalarType, item_scalarType) : item_scalarType;
|
|
if (scalarType == ScalarType::Double) {
|
|
// this won't change (unless we hit undefined, but that will fail later).
|
|
return *scalarType;
|
|
}
|
|
}
|
|
return *scalarType;
|
|
}
|
|
AT_ERROR("Could not infer dtype of ", Py_TYPE(obj)->tp_name);
|
|
}
|
|
|
|
void recursive_store(char* data, IntArrayRef sizes, IntArrayRef strides, int64_t dim,
|
|
ScalarType scalarType, int elementSize, PyObject* obj) {
|
|
int64_t ndim = sizes.size();
|
|
if (dim == ndim) {
|
|
torch::utils::store_scalar(data, scalarType, obj);
|
|
return;
|
|
}
|
|
|
|
auto n = sizes[dim];
|
|
auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence"));
|
|
if (!seq) throw python_error();
|
|
auto seq_size = PySequence_Fast_GET_SIZE(seq.get());
|
|
if (seq_size != n) {
|
|
throw ValueError("expected sequence of length %lld at dim %lld (got %lld)",
|
|
(long long)n, (long long)dim, (long long)seq_size);
|
|
}
|
|
|
|
PyObject** items = PySequence_Fast_ITEMS(seq.get());
|
|
for (int64_t i = 0; i < n; i++) {
|
|
recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]);
|
|
data += strides[dim] * elementSize;
|
|
}
|
|
}
|
|
|
|
Tensor internal_new_from_data(
|
|
c10::TensorTypeId type_id,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device_opt,
|
|
PyObject* data,
|
|
bool copy_variables,
|
|
bool copy_numpy,
|
|
bool type_inference,
|
|
bool pin_memory = false) {
|
|
|
|
if (THPUtils_checkString(data)) {
|
|
throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name);
|
|
}
|
|
|
|
if (THPVariable_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from a variable");
|
|
auto var = reinterpret_cast<THPVariable*>(data)->cdata;
|
|
if (copy_variables) {
|
|
var = var.detach();
|
|
}
|
|
// infer the scalar type and device type; it's not expected to infer the layout since these constructors
|
|
// are defined per-layout-type (e.g. tensor vs sparse_coo_tensor).
|
|
const auto& inferred_scalar_type = type_inference ? var.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : (type_inference ? var.device() : at::Device(computeDeviceType(type_id)));
|
|
AutoNoGIL no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return var.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables);
|
|
}
|
|
|
|
#ifdef USE_NUMPY
|
|
if (PyObject_HasAttrString(data, "__cuda_array_interface__")) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from __cuda_array_interface__");
|
|
auto tensor = autograd::make_variable(tensor_from_cuda_array_interface(data), /*requires_grad=*/false);
|
|
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : at::Device(computeDeviceType(type_id));
|
|
AutoNoGIL no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
|
|
}
|
|
|
|
if (PyArray_Check(data)) {
|
|
TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from numpy");
|
|
auto tensor = autograd::make_variable(tensor_from_numpy(data), /*requires_grad=*/false);
|
|
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
|
|
auto device = device_opt.has_value() ? *device_opt : at::Device(computeDeviceType(type_id));
|
|
AutoNoGIL no_gil;
|
|
maybe_initialize_cuda(device);
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
|
|
}
|
|
#endif
|
|
|
|
auto sizes = compute_sizes(data);
|
|
ScalarType inferred_scalar_type = type_inference ? infer_scalar_type(data) : scalar_type;
|
|
// This exists to prevent us from tracing the call to empty(). The actual
|
|
// autograd code doesn't really matter, because requires_grad is always false
|
|
// here.
|
|
Tensor tensor;
|
|
{
|
|
at::AutoNonVariableTypeMode guard;
|
|
tensor = at::empty(sizes, at::initialTensorOptions().dtype(inferred_scalar_type).pinned_memory(pin_memory));
|
|
recursive_store(
|
|
(char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0,
|
|
inferred_scalar_type, tensor.dtype().itemsize(), data);
|
|
}
|
|
auto device = device_opt.has_value() ? *device_opt : at::Device(computeDeviceType(type_id));
|
|
AutoNoGIL no_gil;
|
|
maybe_initialize_cuda(device);
|
|
// However, it is VERY important that we trace the to() call here (even
|
|
// though the reason this is important is a hack). Without *some* factory
|
|
// function call that is traced at construction time, we will consider
|
|
// a tensor constant as originating from "outside" the trace, and if you
|
|
// try to return it directly we will fail with the error saying no
|
|
// "no observable data dependence". In an ideal world, we wouldn't trace
|
|
// a to() call but I need to think harder about what exactly we should trace
|
|
// in this case.
|
|
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false);
|
|
}
|
|
|
|
Tensor new_from_data_copy(
|
|
c10::TensorTypeId type_id,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
return internal_new_from_data(type_id, scalar_type, std::move(device), data, true, true, false);
|
|
}
|
|
|
|
Tensor legacy_new_from_sequence(
|
|
c10::TensorTypeId type_id,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
if (!PySequence_Check(data)) {
|
|
throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name);
|
|
}
|
|
return internal_new_from_data(type_id, scalar_type, std::move(device), data, false, false, false);
|
|
}
|
|
|
|
void check_legacy_ctor_device(c10::TensorTypeId type_id, c10::optional<Device> device) {
|
|
if (device.has_value()) {
|
|
TORCH_CHECK(computeDeviceType(type_id) == device.value().type(),
|
|
"legacy constructor for device type: ", computeDeviceType(type_id),
|
|
" was passed device type: ", device.value().type(),
|
|
", but device type must be: ", computeDeviceType(type_id));
|
|
}
|
|
}
|
|
|
|
Tensor legacy_sparse_tensor_ctor(c10::TensorTypeId type_id, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor indices, Tensor values, *, Device? device=None)",
|
|
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
});
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
return at::empty({0}, options(type_id, scalar_type, deviceOptional));
|
|
} else if (r.idx == 1) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return autograd::make_variable(at::unsafeTensorFromTH(cdata, true));
|
|
} else if (r.idx == 2) {
|
|
auto deviceOptional = r.deviceOptional(2);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
|
|
} else if (r.idx == 3) {
|
|
auto deviceOptional = r.deviceOptional(3);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(type_id, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(type_id, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor legacy_sparse_tensor_new(c10::TensorTypeId type_id, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor indices, Tensor values, *, Device? device=None)",
|
|
"new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)",
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
});
|
|
ParsedArgs<5> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, options(type_id, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return autograd::make_variable(at::unsafeTensorFromTH(cdata, true));
|
|
} else if (r.idx == 2) {
|
|
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
|
|
// have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(2);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1));
|
|
} else if (r.idx == 3) {
|
|
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
|
|
// have a device (we should infer it).
|
|
auto deviceOptional = r.deviceOptional(3);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(type_id, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(type_id, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
|
|
c10::TensorTypeId typeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::TensorTypeId type_id) {
|
|
auto device_type = r.isNone(device_idx) ? computeDeviceType(type_id) : r.device(device_idx).type();
|
|
return backendToTensorTypeId(backendToBackendOfDeviceType(tensorTypeIdToBackend(type_id), device_type));
|
|
}
|
|
|
|
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
|
|
c10::TensorTypeId denseTypeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::TensorTypeId type_id) {
|
|
auto device_type = r.isNone(device_idx) ? computeDeviceType(type_id) : r.device(device_idx).type();
|
|
return backendToTensorTypeId(toDense(backendToBackendOfDeviceType(tensorTypeIdToBackend(type_id), device_type)));
|
|
}
|
|
} // namespace
|
|
|
|
Tensor legacy_tensor_ctor(c10::TensorTypeId type_id, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(Storage storage)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor other)",
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
"new(PyObject* data, *, Device? device=None)",
|
|
});
|
|
|
|
if (isSparse(tensorTypeIdToBackend(type_id))) {
|
|
return legacy_sparse_tensor_ctor(type_id, scalar_type, args, kwargs);
|
|
}
|
|
|
|
ParsedArgs<2> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, options(type_id, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
return new_with_storage(type_id, scalar_type, r.storage(0));
|
|
} else if (r.idx == 2) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return autograd::make_variable(at::unsafeTensorFromTH(cdata, true));
|
|
} else if (r.idx == 3) {
|
|
return new_with_tensor(type_id, scalar_type, r.tensor(0));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(type_id, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(type_id, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
} else if (r.idx == 5) {
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
return legacy_new_from_sequence(type_id, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor legacy_tensor_new(c10::TensorTypeId type_id, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new(*, Device? device=None)",
|
|
"new(Storage storage)",
|
|
"new(*, int64_t cdata)|hidden",
|
|
"new(Tensor other)", // this doesn't have a dtype/device because it creates an alias.
|
|
"new(IntArrayRef size, *, Device? device=None)",
|
|
"new(PyObject* data, *, Device? device=None)",
|
|
});
|
|
|
|
if (isSparse(tensorTypeIdToBackend(type_id))) {
|
|
return legacy_sparse_tensor_new(type_id, scalar_type, args, kwargs);
|
|
}
|
|
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
auto deviceOptional = r.deviceOptional(0);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
at::OptionalDeviceGuard device_guard(deviceOptional);
|
|
return at::empty({0}, options(type_id, scalar_type));
|
|
} else if (r.idx == 1) {
|
|
return new_with_storage(type_id, scalar_type, r.storage(0));
|
|
} else if (r.idx == 2) {
|
|
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
|
|
return autograd::make_variable(at::unsafeTensorFromTH(cdata, true));
|
|
} else if (r.idx == 3) {
|
|
return new_with_tensor(type_id, scalar_type, r.tensor(0));
|
|
} else if (r.idx == 4) {
|
|
PyObject* arg = r.pyobject(0);
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
|
|
// new(sequence) binds to this signature but should be treated differently
|
|
// unless the sequences is a torch.Size
|
|
return legacy_new_from_sequence(type_id, scalar_type, deviceOptional, r.pyobject(0));
|
|
}
|
|
return new_with_sizes(type_id, scalar_type, r.deviceOptional(1), r.intlist(0));
|
|
} else if (r.idx == 5) {
|
|
auto deviceOptional = r.deviceOptional(1);
|
|
check_legacy_ctor_device(type_id, deviceOptional);
|
|
return legacy_new_from_sequence(type_id, scalar_type, r.deviceOptional(1), r.pyobject(0));
|
|
}
|
|
throw std::runtime_error("new(): invalid arguments");
|
|
}
|
|
|
|
Tensor indexing_tensor_from_data(
|
|
c10::TensorTypeId type_id,
|
|
at::ScalarType scalar_type,
|
|
c10::optional<Device> device,
|
|
PyObject* data) {
|
|
// Specific to tensor indexing, converts an indexing list to an
|
|
// indexing tensor (type Byte or Long)
|
|
ScalarType inferred_scalar_type = infer_scalar_type(data);
|
|
if (inferred_scalar_type == ScalarType::Byte || inferred_scalar_type == ScalarType::Bool) {
|
|
return internal_new_from_data(type_id, inferred_scalar_type, std::move(device), data, false, false, false);
|
|
} else {
|
|
return internal_new_from_data(type_id, scalar_type, std::move(device), data, false, false, false);
|
|
}
|
|
}
|
|
|
|
Tensor sparse_coo_tensor_ctor(c10::TensorTypeId type_id, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
"sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
"sparse_coo_tensor(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<6> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
bool type_inference = r.isNone(2);
|
|
const auto inferred_type_id = denseTypeIdWithDefault(r, 3, type_id);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(2, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(3));
|
|
// if no dtype provided, infer type based on value type.
|
|
Tensor values = internal_new_from_data(inferred_type_id, inferred_scalar_type, r.deviceOptional(3), r.pyobject(1), false, true, type_inference);
|
|
Tensor indices = internal_new_from_data(legacyExtractTypeId(values.type_set()), kLong, r.deviceOptional(3), r.pyobject(0), false, true, false);
|
|
return at::sparse_coo_tensor(indices, values, values.options().layout(at::kSparse)).set_requires_grad(r.toBool(4));
|
|
} else if (r.idx == 1) {
|
|
bool type_inference = r.isNone(3);
|
|
const auto inferred_type_id = denseTypeIdWithDefault(r, 4, type_id);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(3, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(4));
|
|
Tensor values = internal_new_from_data(inferred_type_id, inferred_scalar_type, r.deviceOptional(4), r.pyobject(1), false, true, type_inference);
|
|
Tensor indices = internal_new_from_data(legacyExtractTypeId(values.type_set()), kLong, r.deviceOptional(4), r.pyobject(0), false, true, false);
|
|
return at::sparse_coo_tensor(indices, values, r.intlist(2), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(5));
|
|
} else if (r.idx == 2) {
|
|
const auto inferred_type_id = typeIdWithDefault(r, 2, type_id);
|
|
const auto inferred_scalar_type = r.scalartypeWithDefault(1, scalar_type);
|
|
at::OptionalDeviceGuard device_guard(r.deviceOptional(2));
|
|
return at::sparse_coo_tensor(r.intlist(0), options(inferred_type_id, inferred_scalar_type).layout(at::kSparse)).set_requires_grad(r.toBool(3));
|
|
}
|
|
throw std::runtime_error("sparse_coo_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor tensor_ctor(c10::TensorTypeId type_id, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
"tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False, DimnameList? names=None)",
|
|
#else
|
|
"tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)",
|
|
#endif
|
|
});
|
|
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
constexpr int ctor_num_args = 6;
|
|
#else
|
|
constexpr int ctor_num_args = 5;
|
|
#endif
|
|
ParsedArgs<ctor_num_args> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
PyErr_WarnEx(PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
|
|
"or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).", 1);
|
|
}
|
|
|
|
bool type_inference = r.isNone(1);
|
|
bool pin_memory = r.toBool(3);
|
|
bool args_requires_grad = r.toBool(4);
|
|
auto new_tensor = internal_new_from_data(
|
|
typeIdWithDefault(r, 2, type_id),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
data,
|
|
true,
|
|
true,
|
|
type_inference,
|
|
pin_memory);
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
auto names = r.toDimnameListOptional(5);
|
|
if (names) {
|
|
at::namedinference::propagate_names(new_tensor, *names, /*validate_names=*/true);
|
|
}
|
|
#endif
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor as_tensor(c10::TensorTypeId type_id, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
// TODO: add requires_grad once we decide on semantics for sharing data.
|
|
static PythonArgParser parser({
|
|
"as_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None)",
|
|
});
|
|
|
|
ParsedArgs<3> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
bool type_inference = r.isNone(1);
|
|
return internal_new_from_data(
|
|
typeIdWithDefault(r, 2, type_id),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
r.pyobject(0),
|
|
false,
|
|
false,
|
|
type_inference);
|
|
}
|
|
throw std::runtime_error("tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor new_tensor(c10::TensorTypeId type_id, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
});
|
|
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
PyObject* data = r.pyobject(0);
|
|
if (THPVariable_Check(data)) {
|
|
PyErr_WarnEx(PyExc_UserWarning,
|
|
"To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() "
|
|
"or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor).", 1);
|
|
}
|
|
|
|
bool args_requires_grad = r.toBool(3);
|
|
auto new_tensor = new_from_data_copy(
|
|
typeIdWithDefault(r, 2, type_id),
|
|
r.scalartypeWithDefault(1, scalar_type),
|
|
r.deviceOptional(2),
|
|
data);
|
|
new_tensor.detach_(); // ensure new_tensor a leaf node
|
|
new_tensor.set_requires_grad(args_requires_grad);
|
|
return new_tensor;
|
|
}
|
|
throw std::runtime_error("new_tensor(): invalid arguments");
|
|
}
|
|
|
|
Tensor new_ones(c10::TensorTypeId type_id, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
|
|
static PythonArgParser parser({
|
|
"new_ones(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
|
|
}, /*traceable=*/true);
|
|
|
|
ParsedArgs<4> parsed_args;
|
|
auto r = parser.parse(args, kwargs, parsed_args);
|
|
if (r.idx == 0) {
|
|
const auto actual_type_id = typeIdWithDefault(r, 2, type_id);
|
|
const auto actual_scalar_type = r.scalartypeWithDefault(1, scalar_type);
|
|
return dispatch_ones(actual_type_id, actual_scalar_type, r.deviceOptional(2), r.intlist(0)).set_requires_grad(r.toBool(3));
|
|
}
|
|
throw std::runtime_error("new_ones(): invalid arguments");
|
|
}
|
|
|
|
}} // namespace torch::utils
|