mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29299
This reverts commit 9c43b16df9, but also
with the changes from D18348622. Comments there:
thpp-compatibility is used by admarket/adreview/service:adreviewservice and
libtorch is too big for the service to deal with.
thpp-compatibility doesn't support autograd, so we hack around dispatching
variables by using AutoNonVariableTypeMode everywhere we call into ATen,
so we never attempt to call into Variable stubs. If you get it wrong,
you'll get an error like:
```
what(): Could not run 'aten::empty' with arguments from the 'VariableTensorId' backend. 'aten::empty' is only available for these backends: [SparseCPUTensorId, CPUTensorId, MkldnnCPUTensorId]. (lookup_ at caffe2/aten/src/ATen/core/dispatch/DispatchTable.h:298)
```
Test Plan:
Imported from OSS
```
buck test //thpp-compatibility/...
buck build mode/opt-clang admarket/adreview/service:adreviewservice
```
adreviewservice canary: https://our.intern.facebook.com/intern/ads/canary/422290029716387895 (comparing against parent comment due to current breakage) ==> experiment store https://our.intern.facebook.com/intern/experiment_store/experiment/43990006/
adfinder canary: https://our.intern.facebook.com/intern/ads/canary/422268535840333934
adindexer canary: https://our.intern.facebook.com/intern/ads/canary/422268550559034675
adreview second canary: https://our.intern.facebook.com/intern/ads/canary/422307863515591925
canary without thpp-compat fixups https://our.intern.facebook.com/intern/ads/canary/422308951649168772
Reviewed By: dreiss
Differential Revision: D18353504
Pulled By: ezyang
fbshipit-source-id: 65feaba39fa07bb66762810909aeb38868668a30
808 lines
32 KiB
Python
808 lines
32 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import torch
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, test_util, workspace, model_helper, brew
|
|
|
|
import caffe2.python.hypothesis_test_util as htu
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given
|
|
|
|
|
|
class TestWorkspace(unittest.TestCase):
|
|
def setUp(self):
|
|
self.net = core.Net("test-net")
|
|
self.testblob_ref = self.net.ConstantFill(
|
|
[], "testblob", shape=[1, 2, 3, 4], value=1.0)
|
|
workspace.ResetWorkspace()
|
|
|
|
def testRootFolder(self):
|
|
self.assertEqual(workspace.ResetWorkspace(), True)
|
|
self.assertEqual(workspace.RootFolder(), ".")
|
|
self.assertEqual(
|
|
workspace.ResetWorkspace("/tmp/caffe-workspace-test"), True)
|
|
self.assertEqual(workspace.RootFolder(), "/tmp/caffe-workspace-test")
|
|
|
|
def testWorkspaceHasBlobWithNonexistingName(self):
|
|
self.assertEqual(workspace.HasBlob("non-existing"), False)
|
|
|
|
def testRunOperatorOnce(self):
|
|
self.assertEqual(
|
|
workspace.RunOperatorOnce(
|
|
self.net.Proto().op[0].SerializeToString()
|
|
), True
|
|
)
|
|
self.assertEqual(workspace.HasBlob("testblob"), True)
|
|
blobs = workspace.Blobs()
|
|
self.assertEqual(len(blobs), 1)
|
|
self.assertEqual(blobs[0], "testblob")
|
|
|
|
def testGetOperatorCost(self):
|
|
op = core.CreateOperator(
|
|
"Conv2D",
|
|
["X", "W"], ["Y"],
|
|
stride_h=1,
|
|
stride_w=1,
|
|
pad_t=1,
|
|
pad_l=1,
|
|
pad_b=1,
|
|
pad_r=1,
|
|
kernel=3,
|
|
)
|
|
X = np.zeros((1, 8, 8, 8))
|
|
W = np.zeros((1, 1, 3, 3))
|
|
workspace.FeedBlob("X", X)
|
|
workspace.FeedBlob("W", W)
|
|
flops, _ = workspace.GetOperatorCost(op.SerializeToString(), ["X", "W"])
|
|
self.assertEqual(flops, 1152)
|
|
|
|
def testRunNetOnce(self):
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
|
|
self.assertEqual(workspace.HasBlob("testblob"), True)
|
|
|
|
def testCurrentWorkspaceWrapper(self):
|
|
self.assertNotIn("testblob", workspace.C.Workspace.current.blobs)
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
|
|
self.assertEqual(workspace.HasBlob("testblob"), True)
|
|
self.assertIn("testblob", workspace.C.Workspace.current.blobs)
|
|
workspace.ResetWorkspace()
|
|
self.assertNotIn("testblob", workspace.C.Workspace.current.blobs)
|
|
|
|
def testRunPlan(self):
|
|
plan = core.Plan("test-plan")
|
|
plan.AddStep(core.ExecutionStep("test-step", self.net))
|
|
self.assertEqual(
|
|
workspace.RunPlan(plan.Proto().SerializeToString()), True)
|
|
self.assertEqual(workspace.HasBlob("testblob"), True)
|
|
|
|
def testRunPlanInBackground(self):
|
|
plan = core.Plan("test-plan")
|
|
plan.AddStep(core.ExecutionStep("test-step", self.net))
|
|
background_plan = workspace.RunPlanInBackground(plan)
|
|
while not background_plan.is_done():
|
|
pass
|
|
self.assertEqual(background_plan.is_succeeded(), True)
|
|
self.assertEqual(workspace.HasBlob("testblob"), True)
|
|
|
|
def testConstructPlanFromSteps(self):
|
|
step = core.ExecutionStep("test-step-as-plan", self.net)
|
|
self.assertEqual(workspace.RunPlan(step), True)
|
|
self.assertEqual(workspace.HasBlob("testblob"), True)
|
|
|
|
def testResetWorkspace(self):
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
|
|
self.assertEqual(workspace.HasBlob("testblob"), True)
|
|
self.assertEqual(workspace.ResetWorkspace(), True)
|
|
self.assertEqual(workspace.HasBlob("testblob"), False)
|
|
|
|
def testTensorAccess(self):
|
|
ws = workspace.C.Workspace()
|
|
|
|
""" test in-place modification """
|
|
ws.create_blob("tensor").feed(np.array([1.1, 1.2, 1.3]))
|
|
tensor = ws.blobs["tensor"].tensor()
|
|
tensor.data[0] = 3.3
|
|
val = np.array([3.3, 1.2, 1.3])
|
|
np.testing.assert_array_equal(tensor.data, val)
|
|
np.testing.assert_array_equal(ws.blobs["tensor"].fetch(), val)
|
|
|
|
""" test in-place initialization """
|
|
tensor.init([2, 3], core.DataType.INT32)
|
|
for x in range(2):
|
|
for y in range(3):
|
|
tensor.data[x, y] = 0
|
|
tensor.data[1, 1] = 100
|
|
val = np.zeros([2, 3], dtype=np.int32)
|
|
val[1, 1] = 100
|
|
np.testing.assert_array_equal(tensor.data, val)
|
|
np.testing.assert_array_equal(ws.blobs["tensor"].fetch(), val)
|
|
|
|
""" strings cannot be initialized from python """
|
|
with self.assertRaises(RuntimeError):
|
|
tensor.init([3, 4], core.DataType.STRING)
|
|
|
|
""" feed (copy) data into tensor """
|
|
val = np.array([[b'abc', b'def'], [b'ghi', b'jkl']], dtype=np.object)
|
|
tensor.feed(val)
|
|
self.assertEquals(tensor.data[0, 0], b'abc')
|
|
np.testing.assert_array_equal(ws.blobs["tensor"].fetch(), val)
|
|
|
|
val = np.array([1.1, 10.2])
|
|
tensor.feed(val)
|
|
val[0] = 5.2
|
|
self.assertEquals(tensor.data[0], 1.1)
|
|
|
|
""" fetch (copy) data from tensor """
|
|
val = np.array([1.1, 1.2])
|
|
tensor.feed(val)
|
|
val2 = tensor.fetch()
|
|
tensor.data[0] = 5.2
|
|
val3 = tensor.fetch()
|
|
np.testing.assert_array_equal(val, val2)
|
|
self.assertEquals(val3[0], 5.2)
|
|
|
|
def testFetchFeedBlob(self):
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
|
|
fetched = workspace.FetchBlob("testblob")
|
|
# check if fetched is correct.
|
|
self.assertEqual(fetched.shape, (1, 2, 3, 4))
|
|
np.testing.assert_array_equal(fetched, 1.0)
|
|
fetched[:] = 2.0
|
|
self.assertEqual(workspace.FeedBlob("testblob", fetched), True)
|
|
fetched_again = workspace.FetchBlob("testblob")
|
|
self.assertEqual(fetched_again.shape, (1, 2, 3, 4))
|
|
np.testing.assert_array_equal(fetched_again, 2.0)
|
|
|
|
def testFetchFeedBlobViaBlobReference(self):
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
|
|
fetched = workspace.FetchBlob(self.testblob_ref)
|
|
# check if fetched is correct.
|
|
self.assertEqual(fetched.shape, (1, 2, 3, 4))
|
|
np.testing.assert_array_equal(fetched, 1.0)
|
|
fetched[:] = 2.0
|
|
self.assertEqual(workspace.FeedBlob(self.testblob_ref, fetched), True)
|
|
fetched_again = workspace.FetchBlob("testblob") # fetch by name now
|
|
self.assertEqual(fetched_again.shape, (1, 2, 3, 4))
|
|
np.testing.assert_array_equal(fetched_again, 2.0)
|
|
|
|
def testFetchFeedBlobTypes(self):
|
|
for dtype in [np.float16, np.float32, np.float64, np.bool,
|
|
np.int8, np.int16, np.int32, np.int64,
|
|
np.uint8, np.uint16]:
|
|
try:
|
|
rng = np.iinfo(dtype).max * 2
|
|
except ValueError:
|
|
rng = 1000
|
|
data = ((np.random.rand(2, 3, 4) - 0.5) * rng).astype(dtype)
|
|
self.assertEqual(workspace.FeedBlob("testblob_types", data), True)
|
|
fetched_back = workspace.FetchBlob("testblob_types")
|
|
self.assertEqual(fetched_back.shape, (2, 3, 4))
|
|
self.assertEqual(fetched_back.dtype, dtype)
|
|
np.testing.assert_array_equal(fetched_back, data)
|
|
|
|
def testFetchFeedBlobBool(self):
|
|
"""Special case for bool to ensure coverage of both true and false."""
|
|
data = np.zeros((2, 3, 4)).astype(np.bool)
|
|
data.flat[::2] = True
|
|
self.assertEqual(workspace.FeedBlob("testblob_types", data), True)
|
|
fetched_back = workspace.FetchBlob("testblob_types")
|
|
self.assertEqual(fetched_back.shape, (2, 3, 4))
|
|
self.assertEqual(fetched_back.dtype, np.bool)
|
|
np.testing.assert_array_equal(fetched_back, data)
|
|
|
|
def testGetBlobSizeBytes(self):
|
|
for dtype in [np.float16, np.float32, np.float64, np.bool,
|
|
np.int8, np.int16, np.int32, np.int64,
|
|
np.uint8, np.uint16]:
|
|
data = np.random.randn(2, 3).astype(dtype)
|
|
self.assertTrue(workspace.FeedBlob("testblob_sizeBytes", data), True)
|
|
self.assertEqual(
|
|
workspace.GetBlobSizeBytes("testblob_sizeBytes"),
|
|
6 * np.dtype(dtype).itemsize)
|
|
strs1 = np.array([b'Hello World!', b'abcd'])
|
|
strs2 = np.array([b'element1', b'element2'])
|
|
strs1_len, strs2_len = 0, 0
|
|
for str in strs1:
|
|
strs1_len += len(str)
|
|
for str in strs2:
|
|
strs2_len += len(str)
|
|
self.assertTrue(workspace.FeedBlob("testblob_str1", strs1), True)
|
|
self.assertTrue(workspace.FeedBlob("testblob_str2", strs2), True)
|
|
# size of blob "testblob_str1" = size_str1 * meta_.itemsize() + strs1_len
|
|
# size of blob "testblob_str2" = size_str2 * meta_.itemsize() + strs2_len
|
|
self.assertEqual(
|
|
workspace.GetBlobSizeBytes("testblob_str1") -
|
|
workspace.GetBlobSizeBytes("testblob_str2"), strs1_len - strs2_len)
|
|
|
|
def testFetchFeedBlobZeroDim(self):
|
|
data = np.empty(shape=(2, 0, 3), dtype=np.float32)
|
|
self.assertEqual(workspace.FeedBlob("testblob_empty", data), True)
|
|
fetched_back = workspace.FetchBlob("testblob_empty")
|
|
self.assertEqual(fetched_back.shape, (2, 0, 3))
|
|
self.assertEqual(fetched_back.dtype, np.float32)
|
|
|
|
def testFetchFeedLongStringTensor(self):
|
|
# long strings trigger array of object creation
|
|
strs = np.array([
|
|
b' '.join(10 * [b'long string']),
|
|
b' '.join(128 * [b'very long string']),
|
|
b'small \0\1\2 string',
|
|
b"Hello, world! I have special \0 symbols \1!"])
|
|
workspace.FeedBlob('my_str_tensor', strs)
|
|
strs2 = workspace.FetchBlob('my_str_tensor')
|
|
self.assertEqual(strs.shape, strs2.shape)
|
|
for i in range(0, strs.shape[0]):
|
|
self.assertEqual(strs[i], strs2[i])
|
|
|
|
def testFetchFeedShortStringTensor(self):
|
|
# small strings trigger NPY_STRING array
|
|
strs = np.array([b'elem1', b'elem 2', b'element 3'])
|
|
workspace.FeedBlob('my_str_tensor_2', strs)
|
|
strs2 = workspace.FetchBlob('my_str_tensor_2')
|
|
self.assertEqual(strs.shape, strs2.shape)
|
|
for i in range(0, strs.shape[0]):
|
|
self.assertEqual(strs[i], strs2[i])
|
|
|
|
def testFetchFeedPlainString(self):
|
|
# this is actual string, not a tensor of strings
|
|
s = b"Hello, world! I have special \0 symbols \1!"
|
|
workspace.FeedBlob('my_plain_string', s)
|
|
s2 = workspace.FetchBlob('my_plain_string')
|
|
self.assertEqual(s, s2)
|
|
|
|
def testFetchBlobs(self):
|
|
s1 = b"test1"
|
|
s2 = b"test2"
|
|
workspace.FeedBlob('s1', s1)
|
|
workspace.FeedBlob('s2', s2)
|
|
fetch1, fetch2 = workspace.FetchBlobs(['s1', 's2'])
|
|
self.assertEquals(s1, fetch1)
|
|
self.assertEquals(s2, fetch2)
|
|
|
|
def testFetchFeedViaBlobDict(self):
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
|
|
fetched = workspace.blobs["testblob"]
|
|
# check if fetched is correct.
|
|
self.assertEqual(fetched.shape, (1, 2, 3, 4))
|
|
np.testing.assert_array_equal(fetched, 1.0)
|
|
fetched[:] = 2.0
|
|
workspace.blobs["testblob"] = fetched
|
|
fetched_again = workspace.blobs["testblob"]
|
|
self.assertEqual(fetched_again.shape, (1, 2, 3, 4))
|
|
np.testing.assert_array_equal(fetched_again, 2.0)
|
|
|
|
self.assertTrue("testblob" in workspace.blobs)
|
|
self.assertFalse("non_existant" in workspace.blobs)
|
|
self.assertEqual(len(workspace.blobs), 1)
|
|
for key in workspace.blobs:
|
|
self.assertEqual(key, "testblob")
|
|
|
|
def testTorchInterop(self):
|
|
workspace.RunOperatorOnce(core.CreateOperator(
|
|
"ConstantFill", [], "foo", shape=(4,), value=2, dtype=10))
|
|
t = workspace.FetchTorch("foo")
|
|
t.resize_(5)
|
|
t[4] = t[2] = 777
|
|
np.testing.assert_array_equal(t.numpy(), np.array([2,2,777,2,777]))
|
|
np.testing.assert_array_equal(
|
|
workspace.FetchBlob("foo"), np.array([2,2,777,2,777]))
|
|
|
|
z = torch.ones((4,), dtype=torch.int64)
|
|
workspace.FeedBlob('bar', z)
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator("Reshape", ['bar'], ['bar', '_'], shape=(2,2)))
|
|
z[0,1] = 123
|
|
np.testing.assert_array_equal(
|
|
workspace.FetchBlob("bar"), np.array([[1,123],[1,1]]))
|
|
np.testing.assert_array_equal(z, np.array([[1,123],[1,1]]))
|
|
|
|
|
|
class TestMultiWorkspaces(unittest.TestCase):
|
|
def setUp(self):
|
|
workspace.SwitchWorkspace("default")
|
|
workspace.ResetWorkspace()
|
|
|
|
def testCreateWorkspace(self):
|
|
self.net = core.Net("test-net")
|
|
self.net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0)
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True
|
|
)
|
|
self.assertEqual(workspace.HasBlob("testblob"), True)
|
|
self.assertEqual(workspace.SwitchWorkspace("test", True), None)
|
|
self.assertEqual(workspace.HasBlob("testblob"), False)
|
|
self.assertEqual(workspace.SwitchWorkspace("default"), None)
|
|
self.assertEqual(workspace.HasBlob("testblob"), True)
|
|
|
|
try:
|
|
# The following should raise an error.
|
|
workspace.SwitchWorkspace("non-existing")
|
|
# so this should never happen.
|
|
self.assertEqual(True, False)
|
|
except RuntimeError:
|
|
pass
|
|
|
|
workspaces = workspace.Workspaces()
|
|
self.assertTrue("default" in workspaces)
|
|
self.assertTrue("test" in workspaces)
|
|
|
|
|
|
@unittest.skipIf(not workspace.has_gpu_support, "No gpu support.")
|
|
class TestWorkspaceGPU(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
workspace.ResetWorkspace()
|
|
self.net = core.Net("test-net")
|
|
self.net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0)
|
|
self.net.RunAllOnGPU()
|
|
|
|
def testFetchBlobGPU(self):
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(self.net.Proto().SerializeToString()), True)
|
|
fetched = workspace.FetchBlob("testblob")
|
|
# check if fetched is correct.
|
|
self.assertEqual(fetched.shape, (1, 2, 3, 4))
|
|
np.testing.assert_array_equal(fetched, 1.0)
|
|
fetched[:] = 2.0
|
|
self.assertEqual(workspace.FeedBlob("testblob", fetched), True)
|
|
fetched_again = workspace.FetchBlob("testblob")
|
|
self.assertEqual(fetched_again.shape, (1, 2, 3, 4))
|
|
np.testing.assert_array_equal(fetched_again, 2.0)
|
|
|
|
def testGetGpuPeerAccessPattern(self):
|
|
pattern = workspace.GetGpuPeerAccessPattern()
|
|
self.assertEqual(type(pattern), np.ndarray)
|
|
self.assertEqual(pattern.ndim, 2)
|
|
self.assertEqual(pattern.shape[0], pattern.shape[1])
|
|
self.assertEqual(pattern.shape[0], workspace.NumGpuDevices())
|
|
|
|
@unittest.skipIf(not workspace.has_cuda_support,
|
|
"Tensor interop doesn't yet work on ROCm")
|
|
def testTorchInterop(self):
|
|
# CUDA has convenient mem stats, let's use them to make sure we didn't
|
|
# leak memory
|
|
initial_mem = torch.cuda.memory_allocated()
|
|
workspace.RunOperatorOnce(core.CreateOperator(
|
|
"ConstantFill", [], "foo", shape=(4,), value=2, dtype=10,
|
|
device_option=core.DeviceOption(workspace.GpuDeviceType)))
|
|
t = workspace.FetchTorch("foo")
|
|
t.resize_(5)
|
|
self.assertTrue(t.is_cuda)
|
|
t[4] = t[2] = 777
|
|
np.testing.assert_array_equal(
|
|
t.cpu().numpy(), np.array([2,2,777,2,777]))
|
|
np.testing.assert_array_equal(
|
|
workspace.FetchBlob("foo"), np.array([2,2,777,2,777]))
|
|
|
|
z = torch.ones((4,), dtype=torch.int64, device="cuda")
|
|
workspace.FeedBlob('bar', z)
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator("Reshape", ['bar'], ['bar', '_'], shape=(2,2),
|
|
device_option=core.DeviceOption(workspace.GpuDeviceType)))
|
|
z[0,1] = 123
|
|
np.testing.assert_array_equal(
|
|
workspace.FetchBlob("bar"), np.array([[1,123],[1,1]]))
|
|
np.testing.assert_array_equal(z.cpu(), np.array([[1,123],[1,1]]))
|
|
|
|
self.assertGreater(torch.cuda.memory_allocated(), initial_mem)
|
|
# clean up everything
|
|
del t
|
|
del z
|
|
workspace.ResetWorkspace()
|
|
self.assertEqual(torch.cuda.memory_allocated(), initial_mem)
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class TestWorkspaceIDEEP(test_util.TestCase):
|
|
|
|
def testFeedFetchBlobIDEEP(self):
|
|
arr = np.random.randn(2, 3).astype(np.float32)
|
|
workspace.FeedBlob(
|
|
"testblob_ideep", arr, core.DeviceOption(caffe2_pb2.IDEEP))
|
|
fetched = workspace.FetchBlob("testblob_ideep")
|
|
np.testing.assert_array_equal(arr, fetched)
|
|
|
|
class TestImmedibate(test_util.TestCase):
|
|
def testImmediateEnterExit(self):
|
|
workspace.StartImmediate(i_know=True)
|
|
self.assertTrue(workspace.IsImmediate())
|
|
workspace.StopImmediate()
|
|
self.assertFalse(workspace.IsImmediate())
|
|
|
|
def testImmediateRunsCorrectly(self):
|
|
workspace.StartImmediate(i_know=True)
|
|
net = core.Net("test-net")
|
|
net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0)
|
|
self.assertEqual(
|
|
workspace.ImmediateBlobs(), ["testblob"])
|
|
content = workspace.FetchImmediate("testblob")
|
|
# Also, the immediate mode should not invade the original namespace,
|
|
# so we check if this is so.
|
|
with self.assertRaises(RuntimeError):
|
|
workspace.FetchBlob("testblob")
|
|
np.testing.assert_array_equal(content, 1.0)
|
|
content[:] = 2.0
|
|
self.assertTrue(workspace.FeedImmediate("testblob", content))
|
|
np.testing.assert_array_equal(
|
|
workspace.FetchImmediate("testblob"), 2.0)
|
|
workspace.StopImmediate()
|
|
with self.assertRaises(RuntimeError):
|
|
content = workspace.FetchImmediate("testblob")
|
|
|
|
def testImmediateRootFolder(self):
|
|
workspace.StartImmediate(i_know=True)
|
|
# for testing we will look into the _immediate_root_folder variable
|
|
# but in normal usage you should not access that.
|
|
self.assertTrue(len(workspace._immediate_root_folder) > 0)
|
|
root_folder = workspace._immediate_root_folder
|
|
self.assertTrue(os.path.isdir(root_folder))
|
|
workspace.StopImmediate()
|
|
self.assertTrue(len(workspace._immediate_root_folder) == 0)
|
|
# After termination, immediate mode should have the root folder
|
|
# deleted.
|
|
self.assertFalse(os.path.exists(root_folder))
|
|
|
|
|
|
class TestCppEnforceAsException(test_util.TestCase):
|
|
def testEnforce(self):
|
|
op = core.CreateOperator("Relu", ["X"], ["Y"])
|
|
with self.assertRaises(RuntimeError):
|
|
workspace.RunOperatorOnce(op)
|
|
|
|
|
|
class TestCWorkspace(htu.HypothesisTestCase):
|
|
def test_net_execution(self):
|
|
ws = workspace.C.Workspace()
|
|
self.assertEqual(ws.nets, {})
|
|
self.assertEqual(ws.blobs, {})
|
|
net = core.Net("test-net")
|
|
net.ConstantFill([], "testblob", shape=[1, 2, 3, 4], value=1.0)
|
|
ws.create_net(net)
|
|
# If we do not specify overwrite, this should raise an error.
|
|
with self.assertRaises(RuntimeError):
|
|
ws.create_net(net)
|
|
# But, if we specify overwrite, this should pass.
|
|
ws.create_net(net, True)
|
|
# Overwrite can also be a kwarg.
|
|
ws.create_net(net, overwrite=True)
|
|
self.assertIn("testblob", ws.blobs)
|
|
self.assertEqual(len(ws.nets), 1)
|
|
net_name = net.Proto().name
|
|
self.assertIn("test-net", net_name)
|
|
net = ws.nets[net_name].run()
|
|
blob = ws.blobs["testblob"]
|
|
np.testing.assert_array_equal(
|
|
np.ones((1, 2, 3, 4), dtype=np.float32),
|
|
blob.fetch())
|
|
|
|
@given(name=st.text(), value=st.floats(min_value=-1, max_value=1.0))
|
|
def test_operator_run(self, name, value):
|
|
ws = workspace.C.Workspace()
|
|
op = core.CreateOperator(
|
|
"ConstantFill", [], [name], shape=[1], value=value)
|
|
ws.run(op)
|
|
self.assertIn(name, ws.blobs)
|
|
np.testing.assert_allclose(
|
|
[value], ws.blobs[name].fetch(), atol=1e-4, rtol=1e-4)
|
|
|
|
@given(blob_name=st.text(),
|
|
net_name=st.text(),
|
|
value=st.floats(min_value=-1, max_value=1.0))
|
|
def test_net_run(self, blob_name, net_name, value):
|
|
ws = workspace.C.Workspace()
|
|
net = core.Net(net_name)
|
|
net.ConstantFill([], [blob_name], shape=[1], value=value)
|
|
ws.run(net)
|
|
self.assertIn(blob_name, ws.blobs)
|
|
self.assertNotIn(net_name, ws.nets)
|
|
np.testing.assert_allclose(
|
|
[value], ws.blobs[blob_name].fetch(), atol=1e-4, rtol=1e-4)
|
|
|
|
@given(blob_name=st.text(),
|
|
net_name=st.text(),
|
|
plan_name=st.text(),
|
|
value=st.floats(min_value=-1, max_value=1.0))
|
|
def test_plan_run(self, blob_name, plan_name, net_name, value):
|
|
ws = workspace.C.Workspace()
|
|
plan = core.Plan(plan_name)
|
|
net = core.Net(net_name)
|
|
net.ConstantFill([], [blob_name], shape=[1], value=value)
|
|
|
|
plan.AddStep(core.ExecutionStep("step", nets=[net], num_iter=1))
|
|
|
|
ws.run(plan)
|
|
self.assertIn(blob_name, ws.blobs)
|
|
self.assertIn(net.Name(), ws.nets)
|
|
np.testing.assert_allclose(
|
|
[value], ws.blobs[blob_name].fetch(), atol=1e-4, rtol=1e-4)
|
|
|
|
@given(blob_name=st.text(),
|
|
net_name=st.text(),
|
|
value=st.floats(min_value=-1, max_value=1.0))
|
|
def test_net_create(self, blob_name, net_name, value):
|
|
ws = workspace.C.Workspace()
|
|
net = core.Net(net_name)
|
|
net.ConstantFill([], [blob_name], shape=[1], value=value)
|
|
ws.create_net(net).run()
|
|
self.assertIn(blob_name, ws.blobs)
|
|
self.assertIn(net.Name(), ws.nets)
|
|
np.testing.assert_allclose(
|
|
[value], ws.blobs[blob_name].fetch(), atol=1e-4, rtol=1e-4)
|
|
|
|
@given(name=st.text(),
|
|
value=htu.tensor(),
|
|
device_option=st.sampled_from(htu.device_options))
|
|
def test_array_serde(self, name, value, device_option):
|
|
ws = workspace.C.Workspace()
|
|
ws.create_blob(name).feed(value, device_option=device_option)
|
|
self.assertIn(name, ws.blobs)
|
|
blob = ws.blobs[name]
|
|
np.testing.assert_equal(value, ws.blobs[name].fetch())
|
|
serde_blob = ws.create_blob("{}_serde".format(name))
|
|
serde_blob.deserialize(blob.serialize(name))
|
|
np.testing.assert_equal(value, serde_blob.fetch())
|
|
|
|
@given(name=st.text(), value=st.text())
|
|
def test_string_serde(self, name, value):
|
|
value = value.encode('ascii', 'ignore')
|
|
ws = workspace.C.Workspace()
|
|
ws.create_blob(name).feed(value)
|
|
self.assertIn(name, ws.blobs)
|
|
blob = ws.blobs[name]
|
|
self.assertEqual(value, ws.blobs[name].fetch())
|
|
serde_blob = ws.create_blob("{}_serde".format(name))
|
|
serde_blob.deserialize(blob.serialize(name))
|
|
self.assertEqual(value, serde_blob.fetch())
|
|
|
|
def test_exception(self):
|
|
ws = workspace.C.Workspace()
|
|
|
|
with self.assertRaises(TypeError):
|
|
ws.create_net("...")
|
|
|
|
|
|
class TestPredictor(unittest.TestCase):
|
|
def _create_model(self):
|
|
m = model_helper.ModelHelper()
|
|
y = brew.fc(m, "data", "y",
|
|
dim_in=4, dim_out=2,
|
|
weight_init=('ConstantFill', dict(value=1.0)),
|
|
bias_init=('ConstantFill', dict(value=0.0)),
|
|
axis=0)
|
|
m.net.AddExternalOutput(y)
|
|
return m
|
|
|
|
# Use this test with a bigger model to see how using Predictor allows to
|
|
# avoid issues with low protobuf size limit in Python
|
|
#
|
|
# def test_predictor_predefined(self):
|
|
# workspace.ResetWorkspace()
|
|
# path = 'caffe2/caffe2/test/assets/'
|
|
# with open(path + 'squeeze_predict_net.pb') as f:
|
|
# self.predict_net = f.read()
|
|
# with open(path + 'squeeze_init_net.pb') as f:
|
|
# self.init_net = f.read()
|
|
# self.predictor = workspace.Predictor(self.init_net, self.predict_net)
|
|
|
|
# inputs = [np.zeros((1, 3, 256, 256), dtype='f')]
|
|
# outputs = self.predictor.run(inputs)
|
|
# self.assertEqual(len(outputs), 1)
|
|
# self.assertEqual(outputs[0].shape, (1, 1000, 1, 1))
|
|
# self.assertAlmostEqual(outputs[0][0][0][0][0], 5.19026289e-05)
|
|
|
|
def test_predictor_memory_model(self):
|
|
workspace.ResetWorkspace()
|
|
m = self._create_model()
|
|
workspace.FeedBlob("data", np.zeros([4], dtype='float32'))
|
|
self.predictor = workspace.Predictor(
|
|
workspace.StringifyProto(m.param_init_net.Proto()),
|
|
workspace.StringifyProto(m.net.Proto()))
|
|
|
|
inputs = np.array([1, 3, 256, 256], dtype='float32')
|
|
outputs = self.predictor.run([inputs])
|
|
np.testing.assert_array_almost_equal(
|
|
np.array([[516, 516]], dtype='float32'), outputs)
|
|
|
|
|
|
class TestTransform(htu.HypothesisTestCase):
|
|
@given(input_dim=st.integers(min_value=1, max_value=10),
|
|
output_dim=st.integers(min_value=1, max_value=10),
|
|
batch_size=st.integers(min_value=1, max_value=10))
|
|
def test_simple_transform(self, input_dim, output_dim, batch_size):
|
|
m = model_helper.ModelHelper()
|
|
fc1 = brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim)
|
|
fc2 = brew.fc(m, fc1, "fc2", dim_in=output_dim, dim_out=output_dim)
|
|
conv = brew.conv(m, fc2, "conv",
|
|
dim_in=output_dim,
|
|
dim_out=output_dim,
|
|
use_cudnn=True,
|
|
engine="CUDNN",
|
|
kernel=3)
|
|
|
|
conv.Relu([], conv)\
|
|
.Softmax([], "pred") \
|
|
.LabelCrossEntropy(["label"], ["xent"]) \
|
|
.AveragedLoss([], "loss")
|
|
|
|
transformed_net_proto = workspace.ApplyTransform(
|
|
"ConvToNNPack",
|
|
m.net.Proto())
|
|
|
|
self.assertEqual(transformed_net_proto.op[2].engine, "NNPACK")
|
|
|
|
@given(input_dim=st.integers(min_value=1, max_value=10),
|
|
output_dim=st.integers(min_value=1, max_value=10),
|
|
batch_size=st.integers(min_value=1, max_value=10))
|
|
def test_registry_invalid(self, input_dim, output_dim, batch_size):
|
|
m = model_helper.ModelHelper()
|
|
brew.fc(m, "data", "fc1", dim_in=input_dim, dim_out=output_dim)
|
|
with self.assertRaises(RuntimeError):
|
|
workspace.ApplyTransform(
|
|
"definitely_not_a_real_transform",
|
|
m.net.Proto())
|
|
|
|
@given(value=st.floats(min_value=-1, max_value=1))
|
|
def test_apply_transform_if_faster(self, value):
|
|
|
|
init_net = core.Net("init_net")
|
|
init_net.ConstantFill([], ["data"], shape=[5, 5, 5, 5], value=value)
|
|
init_net.ConstantFill([], ["conv_w"], shape=[5, 5, 3, 3], value=value)
|
|
init_net.ConstantFill([], ["conv_b"], shape=[5], value=value)
|
|
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(init_net.Proto().SerializeToString()), True)
|
|
|
|
m = model_helper.ModelHelper()
|
|
conv = brew.conv(m, "data", "conv",
|
|
dim_in=5,
|
|
dim_out=5,
|
|
kernel=3,
|
|
use_cudnn=True,
|
|
engine="CUDNN")
|
|
|
|
conv.Relu([], conv)\
|
|
.Softmax([], "pred") \
|
|
.AveragedLoss([], "loss")
|
|
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(m.net.Proto().SerializeToString()), True)
|
|
|
|
proto = workspace.ApplyTransformIfFaster(
|
|
"ConvToNNPack",
|
|
m.net.Proto(),
|
|
init_net.Proto())
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(proto.SerializeToString()), True)
|
|
proto = workspace.ApplyTransformIfFaster(
|
|
"ConvToNNPack",
|
|
m.net.Proto(),
|
|
init_net.Proto(),
|
|
warmup_runs=10,
|
|
main_runs=100,
|
|
improvement_threshold=2.0)
|
|
self.assertEqual(
|
|
workspace.RunNetOnce(proto.SerializeToString()), True)
|
|
|
|
|
|
class MyModule(torch.jit.ScriptModule):
|
|
def __init__(self):
|
|
super(MyModule, self).__init__()
|
|
self.mult = torch.nn.Parameter(torch.tensor([[1, 2, 3, 4, 5.0]]))
|
|
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
return self.mult.mm(x)
|
|
|
|
@torch.jit.script_method
|
|
def multi_input(self, x, y, z=2):
|
|
# type: (Tensor, Tensor, int) -> Tensor
|
|
return x + y + z
|
|
|
|
@torch.jit.script_method
|
|
def multi_output(self, x):
|
|
return (x, x + 1)
|
|
|
|
|
|
@unittest.skipIf(
|
|
"ScriptModule" not in core._REGISTERED_OPERATORS,
|
|
"Script module integration in Caffe2 is not enabled")
|
|
class TestScriptModule(test_util.TestCase):
|
|
def _createFeedModule(self):
|
|
workspace.FeedBlob('m', MyModule())
|
|
|
|
def testCreation(self):
|
|
m = MyModule()
|
|
workspace.FeedBlob('module', m)
|
|
m2 = workspace.FetchBlob('module')
|
|
self.assertTrue(m2 is not None)
|
|
|
|
def testForward(self):
|
|
self._createFeedModule()
|
|
val = np.random.rand(5, 5).astype(np.float32)
|
|
param = np.array([[1, 2, 3, 4, 5]]).astype(np.float32)
|
|
workspace.FeedBlob('w', val)
|
|
workspace.RunOperatorOnce(core.CreateOperator("ScriptModule", ["m", "w"], ["y"]))
|
|
np.testing.assert_almost_equal(workspace.FetchBlob("y"), np.matmul(param, val), decimal=5)
|
|
|
|
def testMultiInputOutput(self):
|
|
self._createFeedModule()
|
|
val = np.random.rand(5, 5).astype(np.float32)
|
|
workspace.FeedBlob('w', val)
|
|
val2 = np.random.rand(5, 5).astype(np.float32)
|
|
workspace.FeedBlob('w2', val2)
|
|
workspace.RunOperatorOnce(core.CreateOperator("ScriptModule", ["m", "w", "w2"], ["y"], method="multi_input"))
|
|
workspace.RunOperatorOnce(core.CreateOperator("ScriptModule", ["m", "w"], ["y1", "y2"], method="multi_output"))
|
|
np.testing.assert_almost_equal(workspace.FetchBlob("y"), val + val2 + 2, decimal=5)
|
|
np.testing.assert_almost_equal(workspace.FetchBlob("y1"), val, decimal=5)
|
|
np.testing.assert_almost_equal(workspace.FetchBlob("y2"), val + 1, decimal=5)
|
|
|
|
def testSerialization(self):
|
|
tmpdir = tempfile.mkdtemp()
|
|
try:
|
|
self._createFeedModule()
|
|
workspace.RunOperatorOnce(core.CreateOperator(
|
|
"Save",
|
|
["m"], [],
|
|
absolute_path=1,
|
|
db=os.path.join(tmpdir, "db"), db_type="minidb"))
|
|
workspace.ResetWorkspace()
|
|
|
|
self.assertFalse(workspace.HasBlob('m'))
|
|
workspace.RunOperatorOnce(core.CreateOperator(
|
|
"Load",
|
|
[], [],
|
|
absolute_path=1,
|
|
db=os.path.join(tmpdir, "db"), db_type="minidb",
|
|
load_all=1))
|
|
self.assertTrue(workspace.HasBlob('m'))
|
|
# TODO: make caffe2 side load return python-sided module
|
|
# right now it returns the base class (torch._C.ScriptModule)
|
|
# self.assertTrue(isinstance(workspace.FetchBlob('m'), torch.jit.ScriptModule))
|
|
|
|
# do something with the module
|
|
val = np.random.rand(5, 5).astype(np.float32)
|
|
param = np.array([[1, 2, 3, 4, 5]]).astype(np.float32)
|
|
workspace.FeedBlob('w', val)
|
|
workspace.RunOperatorOnce(core.CreateOperator("ScriptModule", ["m", "w"], ["y"]))
|
|
np.testing.assert_almost_equal(workspace.FetchBlob("y"), np.matmul(param, val), decimal=5)
|
|
finally:
|
|
# clean up temp folder.
|
|
try:
|
|
shutil.rmtree(tmpdir)
|
|
except OSError as e:
|
|
if e.errno != errno.ENOENT:
|
|
raise
|
|
|
|
|
|
class TestScriptModuleFromString(TestScriptModule):
|
|
def _createFeedModule(self):
|
|
workspace.RunOperatorOnce(
|
|
core.CreateOperator(
|
|
"ScriptModuleLoad", [], ["m"],
|
|
serialized_binary=self._get_modules_bytes(MyModule())))
|
|
|
|
def _get_modules_bytes(self, the_module):
|
|
import io
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(the_module, buffer)
|
|
return buffer.getvalue()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|