pytorch/test/cpp/api
davidriazati@fb.com 4e0760f41a Remove is_variable from tests (#56305)
Summary:
`is_variable` spits out a deprecation warning during the build (if it's
still something that needs to be tested we can ignore deprecated
warnings for the whole test instead of this change).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56305

Pulled By: driazati

Reviewed By: ezyang

Differential Revision: D27834218

fbshipit-source-id: c7bbea7e9d8099bac232a3a732a27e4cd7c7b950
2021-04-20 09:03:53 -07:00
..
any.cpp
autograd.cpp Fix autograd when inputs contains tensors without materialized grad_fn (#51940) 2021-02-11 09:22:15 -08:00
CMakeLists.txt Implement public API InferenceMode and its error handling (#55008) 2021-03-31 10:48:00 -07:00
dataloader.cpp Lint trailing newlines (#54737) 2021-03-30 13:09:52 -07:00
dispatch.cpp
enum.cpp
expanding-array.cpp
fft.cpp Remove deprecated spectral ops from torch namespace (#48594) 2020-12-05 04:12:32 -08:00
functional.cpp Add padding_idx argument to EmbeddingBag (#49237) 2021-04-14 09:38:01 -07:00
grad_mode.cpp Make grad mode error just a warning (#56401) 2021-04-20 06:30:55 -07:00
inference_mode.cpp Enable AutoGradMode in InferenceMode. (#56107) 2021-04-19 10:24:20 -07:00
init_baseline.h Lint trailing newlines (#54737) 2021-03-30 13:09:52 -07:00
init_baseline.py
init.cpp
integration.cpp
jit.cpp
memory.cpp
misc.cpp codegen: Resolve overload ambiguities created by defaulted arguments (#49348) 2021-01-04 11:59:16 -08:00
module.cpp
moduledict.cpp Implement C++ ModuleDict (#47707) 2020-11-19 08:07:51 -08:00
modulelist.cpp
modules.cpp Add padding_idx argument to EmbeddingBag (#49237) 2021-04-14 09:38:01 -07:00
namespace.cpp
nn_utils.cpp Flip clip_grad_norm default for error_if_nonfinite to false (#55169) 2021-04-02 12:25:32 -07:00
operations.cpp [Codemod][GleanFbcode] Remove dead includes in caffe2/test (#43953) 2020-09-01 21:48:28 -07:00
optim_baseline.h
optim_baseline.py Remove legacy constructor calls from pytorch codebase. (#54142) 2021-04-11 15:45:17 -07:00
optim.cpp Adding learning rate schedulers to C++ API (#52268) 2021-03-10 23:09:51 -08:00
ordered_dict.cpp
parallel_benchmark.cpp
parallel.cpp
parameterdict.cpp Python/C++ API Parity: Add impl and tests for ParameterDict (#40654) 2020-06-29 08:50:44 -07:00
parameterlist.cpp Impl for ParameterList (#41259) 2020-07-12 20:50:31 -07:00
README.md
rnn.cpp Adding support for CuDNN-based LSTM with projections (#47725) 2020-12-16 11:27:02 -08:00
sequential.cpp
serialize.cpp Modernize for-loops (#50912) 2021-01-22 10:53:24 -08:00
special.cpp [special] add torch.special namespace (#52296) 2021-03-04 00:04:36 -08:00
static.cpp
support.cpp
support.h Implement public API InferenceMode and its error handling (#55008) 2021-03-31 10:48:00 -07:00
tensor_cuda.cpp
tensor_flatten.cpp fix unflatten_dense_tensor when there is empty tensor inside (#50321) 2021-01-23 12:14:34 -08:00
tensor_indexing.cpp Making ops c10-full: list of optional tensors (#49138) 2021-01-04 05:04:02 -08:00
tensor_options_cuda.cpp
tensor_options.cpp [PyTorch] Narrow Device to 2 bytes by narrowing DeviceType and DeviceIndex (#47023) 2020-11-18 19:39:40 -08:00
tensor.cpp Remove is_variable from tests (#56305) 2021-04-20 09:03:53 -07:00
torch_include.cpp
transformer.cpp C++ APIs Transformer NN Module Top Layer (#44333) 2020-09-11 08:25:27 -07:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.